Solveeit Logo

Question

Physics Question on Electromagnetic waves

A plane electromagnetic wave travelling along the XX- direction has a wavelength of 3mm3 \,mm . The variation in the electric field occurs in the YY- direction with an amplitude 66Vm166\,V{{m}^{-1}} . The equations for the electric and magnetic fields as a function of xx and tt are respectively.

A

Ey=33cosπ×1011(txc),{{E}_{y}}=33\,\cos \pi \times {{10}^{11}}\left( t-\frac{x}{c} \right), Bz=1.1×107cosπ×1011(txc){{B}_{z}}=1.1\times {{10}^{-7}}\cos \pi \times {{10}^{11}}\left( t-\frac{x}{c} \right)

B

Ey=11cos2π×1011(txc),{{E}_{y}}=11\,\cos 2\pi \times {{10}^{11}}\left( t-\frac{x}{c} \right), By=11×107cos2π×1011(txc){{B}_{y}}=11\times {{10}^{-7}}\cos 2\pi \times {{10}^{11}}\left( t-\frac{x}{c} \right)

C

Ex=33cosπ×1011(txc),{{E}_{x}}=33\,\cos \pi \times {{10}^{11}}\left( t-\frac{x}{c} \right), Bx=11×107cosπ×1011(txc){{B}_{x}}=11\times {{10}^{-7}}\cos \pi \times {{10}^{11}}\left( t-\frac{x}{c} \right)

D

Ey=66cos2π×1011(txc),{{E}_{y}}=66\,\cos 2\pi \times {{10}^{11}}\left( t-\frac{x}{c} \right), Bz=2.2×107cos2π×1011(txc){{B}_{z}}=2.2\times {{10}^{-7}}\cos 2\pi \times {{10}^{11}}\left( t-\frac{x}{c} \right)

Answer

Ey=66cos2π×1011(txc),{{E}_{y}}=66\,\cos 2\pi \times {{10}^{11}}\left( t-\frac{x}{c} \right), Bz=2.2×107cos2π×1011(txc){{B}_{z}}=2.2\times {{10}^{-7}}\cos 2\pi \times {{10}^{11}}\left( t-\frac{x}{c} \right)

Explanation

Solution

The equation of electric field occurring in Y-direction Ey=66cos2π×1011(txc){{E}_{y}}=66\,\cos 2\pi \times {{10}^{11}}\left( t-\frac{x}{c} \right)
Therefore, for the magnetic field in Z-direction Bz=Eyc(6003×108)cos2π×1011(txc){{B}_{z}}=\frac{{{E}_{y}}}{c}\left( \frac{600}{3\times {{10}^{8}}} \right)\cos 2\pi \times {{10}^{11}}\left( t-\frac{x}{c} \right)
=22×108cos2π×1011(txc)=22\times {{10}^{-8}}\cos 2\pi \times {{10}^{11}}\left( t-\frac{x}{c} \right)
=2.2×107cos2π×1011(txc)=2.2\times {{10}^{-7}}\cos 2\pi \times {{10}^{11}}\left( t-\frac{x}{c} \right)