Solveeit Logo

Question

Question: A plane electromagnetic wave of frequency 25 MHz travel in free space along the x- direction. At a p...

A plane electromagnetic wave of frequency 25 MHz travel in free space along the x- direction. At a particular point in space and time, E=6.3j^Vm1.\overrightarrow{E} = 6.3\widehat{j}Vm^{- 1.}At this point B\overrightarrow{B}is equal to:

A

8.33×108k^T8.33 \times 10^{- 8}\widehat{k}T

B

18.9×108k^T18.9 \times 10^{- 8}\widehat{k}T

C

2.1×108k^T2.1 \times 10^{- 8}\widehat{k}T

D

2.2×108k^T2.2 \times 10^{- 8}\widehat{k}T

Answer

2.1×108k^T2.1 \times 10^{- 8}\widehat{k}T

Explanation

Solution

: Here, E=6.3j^Vm1\overrightarrow{E} = 6.3\widehat{j}Vm^{- 1}

The magnitude of B\overrightarrow{B}is

B=Ec=6.3Vm13×108ms1=2.1×108TB = \frac{E}{c} = \frac{6.3Vm^{- 1}}{3 \times 10^{8}ms^{- 1}} = 2.1 \times 10^{8}T

E\overrightarrow{E} is along y- direction and the wave propagates along x –axis. Therefore, B\overrightarrow{B}should be in a direction perpendicular to both x and y – axis. Using vector algebra E×B\overrightarrow{E} \times \overrightarrow{B} should be along x – direction.

Since, (+j^)×(+k^)=i^,B( + \widehat{j}) \times ( + \widehat{k}) = \widehat{i},\overrightarrow{B} is along z – direction.

Thus, 2.1×108k^T2.1 \times 10^{- 8}\widehat{k}T