Solveeit Logo

Question

Physics Question on Electromagnetic waves

A plane electromagnetic wave is propagating along the direction i^+i^2,\frac{\hat{i}+\hat{i}}{\sqrt{2}}, with its polarization along the direction k^.\hat{k}. The correct form of the magnetic field of the wave would be (here B0B_0 is an appropriate constant):

A

B0i^j^2cos(ωtki^+j^2)B_{0} \frac{\hat{i}-\hat{j}}{\sqrt{2}}cos \left(\omega t-k \frac{\hat{i}+\hat{j}}{\sqrt{2}}\right)

B

B0j^i^2cos(ωtki^+j^2)B_{0} \frac{\hat{j}-\hat{i}}{\sqrt{2}}cos \left(\omega t-k \frac{\hat{i}+\hat{j}}{\sqrt{2}}\right)

C

B0i^+j^2cos(ωtki^+j^2)B_{0} \frac{\hat{i}+\hat{j}}{\sqrt{2}}cos \left(\omega t-k \frac{\hat{i}+\hat{j}}{\sqrt{2}}\right)

D

B0k^cos(ωtki^+j^2)B_{0} \hat{k}\,cos \left(\omega t-k \frac{\hat{i}+\hat{j}}{\sqrt{2}}\right)

Answer

B0i^j^2cos(ωtki^+j^2)B_{0} \frac{\hat{i}-\hat{j}}{\sqrt{2}}cos \left(\omega t-k \frac{\hat{i}+\hat{j}}{\sqrt{2}}\right)

Explanation

Solution

Direction of polarisation =E^=k^= \hat{E} = \hat{k}
Direction of propagation =E^×B^=i^+j^2= \hat{E} \times \hat{B} = \frac{\hat{i}+\hat{j}}{\sqrt{2}}
E^×B^=i^+j^2\therefore \hat{E} \times \hat{B} = \frac{\hat{i}+\hat{j}}{\sqrt{2}}
B^=i^+j^2\hat{B} = \frac{\hat{i}+\hat{j}}{\sqrt{2}}