Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

A plain polarized blue light ray is incident on a prism such that there is no reflection from the surface of the prism. The angle of deviation of the emergent ray is δ\delta = 60^{\circ} (figure 1). The angle of min. deviation for red light from the same prism is min δmin\delta_{min} = 30^{\circ} (figure 2). If the refractive index of prism material for blue light is √3, then which of the following options is correct?
A plain polarized blue light ray
PPBL = Plane Polarized Blue Light PPRL = Plane Polarized Red Light

A

Angle r for blue light in air at the exit plane of the prism is 60^{\circ}

B

The angle of the prism is 45^{\circ}

C

Blue light is polarized in the plane of incidence

D

The refractive index of the material of the prism for red light is √2

Answer

The angle of the prism is 45^{\circ}

Explanation

Solution

The correct options are: (B),(C) and (D).
For blue light,
μ=tanip\mu=tan\,i_p
3=tanip\sqrt3=tan\,i_p
ip=60i_p=60^{\circ}
δ=i+eA\delta=i+e-A
60=60+eA60=60+e-A
e=Ae=A
sin60=3sinr1sin\,60^{\circ}=\sqrt3\,sin\,r_1
32=3sinr1\frac{\sqrt3}{2}=\sqrt3\,sin\,r_1
r1=30r_1=30^{\circ}
r2=A30r_2=A-30^{\circ}
3sin(A30)=sinA\sqrt3sin\,(A-30^{\circ})=sin\,A
32sinA32cosA=sinA\frac{3}{2}sinA-\frac{\sqrt3}{2}cosA=sinA
32cosA=sinA2\frac{-\sqrt3}{2}cosA=-\frac{sinA}{2}
tanA=3tanA=\sqrt3
A=e=60A=e=60^{\circ}
For red light, sin(A+δmin2)sinA2=nR\frac{sin(\frac{A+\delta_{min}}{2})}{sin\frac{A}{2}}=n_R
sin902sin30=nR\frac{sin\frac{90}{2}}{sin\,30}=n_R
n=2n=\sqrt2