Solveeit Logo

Question

Question: A pipe of uniform cross sectional of area a has a right angled bend, impure water of density δ flows...

A pipe of uniform cross sectional of area a has a right angled bend, impure water of density δ flows through the horizontal portion of the pipe. The distance covered by water per second at the bend to keep the pipe in equilibrium against an applied force F at the bend is

A

B

C

D

(F2δa)1/2\left( \frac { \mathrm { F } } { \sqrt { 2 } \delta \mathrm { a } } \right) ^ { 1 / 2 }

Answer

(F2δa)1/2\left( \frac { \mathrm { F } } { \sqrt { 2 } \delta \mathrm { a } } \right) ^ { 1 / 2 }

Explanation

Solution

Force × Time = Change in momentum

or F × ∆t = ∆mv√2 or F = ΔmΔtv2\frac { \Delta \mathrm { m } } { \Delta \mathrm { t } } \mathrm { v } \sqrt { 2 }

= v2×ρaΔlΔt\mathrm { v } \sqrt { 2 } \times \rho \mathrm { a } \frac { \Delta \mathrm { l } } { \Delta \mathrm { t } }

( ∆m = ρa∆L)

or F = = v2 2ρa\sqrt { 2 } \rho \mathrm { a }

v = (F2ρa)1/2\left( \frac { \mathrm { F } } { \sqrt { 2 } \rho \mathrm { a } } \right) ^ { 1 / 2 }