Question
Question: : A pipe is running full of water. At point A it tapers from \[200{\rm{ c}}{{\rm{m}}^2}\] cross-sect...
: A pipe is running full of water. At point A it tapers from 200cm2 cross-sectional area to 100cm2 at other point B. If the pressure difference between A and B is 15cm of water column, the rate of volume flow of water through the pipe in litres/sec (g=10ms−2)
(1) 20
(2) 30
(3) 15
(4) 5
Solution
Hint: From Bernoulli’s equation, we know that the summation of pressure energy, kinetic energy, and gravitational energy of water is constant. Continuity tells us that the mass flow rate of water is constant. We will be using Bernoulli’s equation and the continuity equation to calculate the flow of water.
Complete step by step answer:
Given:
The cross-sectional area of pipe at point A is A1=200cm2.
The cross-sectional area of pipe at point P is A2=100cm2.
The pressure difference between point A and point B is P1−P2=15cmof the water column.
The acceleration due to gravity is g=10ms−2.
We have to calculate the flow rate of water through the pipe.
Let us write the continuity equation for water between point A and point B.
\left( {200{\rm{ c}}{{\rm{m}}^2}} \right){V_1} = \left( {100{\rm{ c}}{{\rm{m}}^2}} \right){V_2}\\
{V_2} = 2{V_1}
{P_1} - {P_2} = 9.80665 \times 15{\rm{ Pa}}\\
= 1470.99{\rm{ Pa}}
{P_1} + \dfrac{1}{2}\rho V_1^2 + g{z_2} = {P_2} + \dfrac{1}{2}\rho V_2^2 + g{z_2}\\
{P_1} + \dfrac{1}{2}\rho V_1^2 = {P_2} + \dfrac{1}{2}\rho V_2^2\\
{P_1} - {P_2} = \dfrac{1}{2}\rho \left( {V_2^2 - V_1^2} \right)
1470.99{\rm{ Pa }} \times \left( {\dfrac{{{{\rm{N}} {\left/
{\vphantom {{\rm{N}} {{{\rm{m}}^2}}}} \right.
} {{{\rm{m}}^2}}}}}{{{\rm{Pa}}}}} \right) \times \left( {\dfrac{{{\rm{kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}}}{{\rm{N}}}} \right) = \dfrac{1}{2}\left( {1000{\rm{ }}{{{\rm{kg}}} {\left/
{\vphantom {{{\rm{kg}}} {{{\rm{m}}^3}}}} \right.
} {{{\rm{m}}^3}}}} \right)\left[ {\left( {2V} \right)_1^2 - V_1^2} \right]\\
3V_1^2 = 2.942\\
{V_1} = 0.99{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\\
\cong 1{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}
Q = \left( {200{\rm{ c}}{{\rm{m}}^2} \times \dfrac{{{{\rm{m}}^2}}}{{{{10}^4}{\rm{
c}}{{\rm{m}}^2}}}} \right)\left( {1{\rm{ }}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}} \right)\\
= 0.02{\rm{ }}{{{{\rm{m}}^3}} {\left/
{\vphantom {{{{\rm{m}}^3}} {\rm{s}}}} \right.
} {\rm{s}}} \times \left( {\dfrac{{1000,{\rm{litre}}}}{{{{\rm{m}}^3}}}} \right)\\
= 20{{{\rm{ litre}}} {\left/
{\vphantom {{{\rm{ litre}}} {\rm{s}}}} \right.
} {\rm{s}}}