Solveeit Logo

Question

Physics Question on thermal properties of matter

A piece of metal weighs 45g45\, g in air and 25g25\, g in a liquid of density 1.5×103kgm31.5 \times 10^{3} \,kg - m ^{-3} kept at 30C30^{\circ} C. When the temperature of the liquid is raised to 40C40^{\circ} C, the metal piece weighs 27g27\, g. The density of liquid at 40C40^{\circ} C is 1.25×103kgm31.25 \times 10^{3} \,kg - m ^{-3}. The coefficient of linear expansion of metal is

A

1.3×103/C1.3 \times 10^{-3} /^{\circ} C

B

5.2×103/C5.2 \times 10^{-3} /^{\circ} C

C

2.6×103/C2.6 \times 10^{-3} /^{\circ} C

D

0.26×103/C0.26 \times 10^{-3} /^{\circ} C

Answer

2.6×103/C2.6 \times 10^{-3} /^{\circ} C

Explanation

Solution

Volume of the metal at 30C30^{\circ} C V30=lossofweightspecificgravity×gV_{30} = \frac{\text{loss} \, \text{of} \, \text{weight} }{\text{specific} \, \text{gravity} \times g} =(4525)g1.5×g=13.33cm3= \frac{\left(45 -25\right)g}{1.5 \times g} = 13.33 \,cm^{3} Similarly, volume of metal at 40C40^{\circ}C V40=(4527)g1.25×g=14.40cm3 V_{40}= \frac{\left(45 -27\right)g}{1.25 \times g} = 14.40\, cm^{3} Now , V40=V30[1+γ(t2t1)]V_{40} = V_{30} \left[1+ \gamma\left(t_{2}-t_{1}\right)\right] or γ=V40V30V30(t2t1)\gamma = \frac{V_{40} - V_{30}}{V_{30} \left(t_{2} -t_{1}\right)} =14.4013.3313.33(4030)= \frac{14.40 - 13.33}{13.33\left(40-30\right)} =8.03×103/C= 8.03 \times10^{-3} /^{\circ}C \therefore Coefficient of linear expansion of the metal α=γ3=8.03×1033\alpha = \frac{\gamma}{3} = \frac{8.03 \times10^{-3}}{3} 2.6×103/C\approx 2.6 \times10^{-3}/^{\circ}C