Solveeit Logo

Question

Question: A piece of metal floats on mercury. The coefficients of volume expansion of the metal and mercury ar...

A piece of metal floats on mercury. The coefficients of volume expansion of the metal and mercury are γ1{{\gamma }_{1}} and γ2{{\gamma }_{2}} respectively. If the temperature of both mercury and metal are increased by an amount ΔT\Delta T, the fraction of the volume of the metal submerged in mercury changes by the factor.
A. 1(γ2γ1)ΔT\text{A}\text{. }\dfrac{1}{\left( {{\gamma }_{2}}-{{\gamma }_{1}} \right)\Delta T}
B. 1(γ1γ2)ΔT\text{B}\text{. }\dfrac{1}{\left( {{\gamma }_{1}}-{{\gamma }_{2}} \right)\Delta T}
C. (γ1γ2)ΔT\text{C}\text{. }\left( {{\gamma }_{1}}-{{\gamma }_{2}} \right)\Delta T
D. (γ2γ1)ΔT\text{D}\text{. }\left( {{\gamma }_{2}}-{{\gamma }_{1}} \right)\Delta T

Explanation

Solution

The metal will float when the weight of the metal is balanced by the buoyant force of the mercury. Hence, they equate the weight and the buoyant force. Then calculate the new volume and density of the metal and mercury respectively. Since the weight of the metal will not change, both the buoyant forces will be the same. Hence, the equate the two buoyant forces.
Formula used:
F=mg
FB=ρgΔVm{{F}_{B}}=\rho g\Delta {{V}_{m}}
Vm=Vm(1+γ1ΔT)V{{'}_{m}}={{V}_{m}}\left( 1+{{\gamma }_{1}}\Delta T \right)
ρ=ρ(1+γ2ΔT)1\rho '=\rho {{\left( 1+{{\gamma }_{2}}\Delta T \right)}^{-1}}

Complete answer:
It is given that the piece of metal is floating on the mercury. That means that the buoyant force of mercury is balancing the weight (i.e. gravitational force) of the metal.
The weight of the metal will be F = mg, where m is the mass of the metal and g is acceleration due to gravity.
The buoyant force applied will be equal to FB=ρgΔVm{{F}_{B}}=\rho g\Delta {{V}_{m}}, where ρ\rho is the density of the liquid and ΔVm\Delta {{V}_{m}} is the submerged volume of the metal.
And F=FBF={{F}_{B}}.
mg=ρgΔVm\Rightarrow mg=\rho g\Delta {{V}_{m}} ….. (i).
The fraction of the volume submerged of the metal in mercury will be f=ΔVmVmf=\dfrac{\Delta {{V}_{m}}}{{{V}_{m}}}.
fVm=ΔVmf{{V}_{m}}=\Delta {{V}_{m}}
Substitute this value in equation (i).
mg=ρgfVm\Rightarrow mg=\rho gf{{V}_{m}} …. (ii).
Now, when the temperature is increased, both the metal and the mercury will expand. As a result, their volumes will increase.
The final volume of the metal is given by Vm=Vm(1+γ1ΔT)V{{'}_{m}}={{V}_{m}}\left( 1+{{\gamma }_{1}}\Delta T \right).
Here, γ1{{\gamma }_{1}} is the coefficient of volume expansion of the metal and Δt\Delta t is the change in temperature.
Since the volume increases, its density will decrease. The final density of the liquid is given by ρ=ρ(1+γ2ΔT)1\rho '=\rho {{\left( 1+{{\gamma }_{2}}\Delta T \right)}^{-1}},
where γ2{{\gamma }_{2}} is the coefficient of volume of expansion of the mercury.
The metal is still floating on mercury but the volume of the metal and the density of mercury are changed.
Let the new fraction of the new volume of the metal submerged in mercury be f’.
Therefore, from equation (ii) we get,
mg=ρgfVmmg=\rho 'gf'V{{'}_{m}} ….. (iii).
Substitute the values of VmV{{'}_{m}} and ρ\rho ' in equation (iii).
mg=ρ(1+γ2ΔT)1gfVm(1+γ1ΔT)\Rightarrow mg=\rho {{\left( 1+{{\gamma }_{2}}\Delta T \right)}^{-1}}gf'{{V}_{m}}\left( 1+{{\gamma }_{1}}\Delta T \right)
mg=ρgfVm(1+γ2ΔT)1(1+γ1ΔT)\Rightarrow mg=\rho gf'{{V}_{m}}{{\left( 1+{{\gamma }_{2}}\Delta T \right)}^{-1}}\left( 1+{{\gamma }_{1}}\Delta T \right) …. (iv)
From (ii) and (iv), we get that
ρgfVm=ρgfVm(1+γ2ΔT)1(1+γ1ΔT)\Rightarrow \rho gf{{V}_{m}}=\rho gf'{{V}_{m}}{{\left( 1+{{\gamma }_{2}}\Delta T \right)}^{-1}}\left( 1+{{\gamma }_{1}}\Delta T \right)
f=f(1+γ2ΔT)1(1+γ1ΔT)\Rightarrow f=f'{{\left( 1+{{\gamma }_{2}}\Delta T \right)}^{-1}}\left( 1+{{\gamma }_{1}}\Delta T \right)
ff=(1+γ2ΔT)1(1+γ1ΔT)\Rightarrow \dfrac{f}{f'}={{\left( 1+{{\gamma }_{2}}\Delta T \right)}^{-1}}\left( 1+{{\gamma }_{1}}\Delta T \right)
ff=(1+γ2ΔT)(1+γ1ΔT)1\Rightarrow \dfrac{f'}{f}=\left( 1+{{\gamma }_{2}}\Delta T \right){{\left( 1+{{\gamma }_{1}}\Delta T \right)}^{-1}}
Generally, the coefficients of volume expansion are very small values. Hence,
(1+γ1ΔT)1(1γ1ΔT){{\left( 1+{{\gamma }_{1}}\Delta T \right)}^{-1}}\approx \left( 1-{{\gamma }_{1}}\Delta T \right).
ff=(1+γ2ΔT)(1γ1ΔT)\Rightarrow \dfrac{f'}{f}=\left( 1+{{\gamma }_{2}}\Delta T \right)\left( 1-{{\gamma }_{1}}\Delta T \right)
ff=1γ1ΔT+γ2ΔTγ1γ2ΔT\Rightarrow \dfrac{f'}{f}=1-{{\gamma }_{1}}\Delta T+{{\gamma }_{2}}\Delta T-{{\gamma }_{1}}{{\gamma }_{2}}\Delta T.
Since the term γ1γ2ΔT-{{\gamma }_{1}}{{\gamma }_{2}}\Delta T is very small compared to other terms, it can be neglected.
ff1+(γ2γ1)ΔT\Rightarrow \dfrac{f'}{f}\approx 1+\left( {{\gamma }_{2}}-{{\gamma }_{1}} \right)\Delta T
ff1=(γ2γ1)ΔT\Rightarrow \dfrac{f'}{f}-1=\left( {{\gamma }_{2}}-{{\gamma }_{1}} \right)\Delta T
fff=(γ2γ1)ΔT\Rightarrow \dfrac{f'-f}{f}=\left( {{\gamma }_{2}}-{{\gamma }_{1}} \right)\Delta T.

Hence, the correct option is D.

Note:
Note that the change in the fraction of the volume of the metal submerged can be positive or negative depending on the values of the coefficients of volume expansions of the metal and mercury.
If γ2{{\gamma }_{2}} > γ1{{\gamma }_{1}}, then the change is positive. Meaning the fraction of volume submerged will be more when the temperature is increased.
If γ2{{\gamma }_{2}} < γ1{{\gamma }_{1}}, then the change is negative. Meaning the fraction of volume submerged will be reduced when the temperature is increased.