Solveeit Logo

Question

Physics Question on Error analysis

A physical quantity QQ is found to depend on quantities aa, bb, cc by the relationQ=a4b3c2.Q = \frac{a^4 b^3}{c^2}.The percentage errors in aa, bb, and cc are 3%, 4%, and 5% respectively. Then, the percentage error in QQ is:

A

66%

B

43%

C

34%

D

14%

Answer

34%

Explanation

Solution

Given: Q=a4b3c2Q = \frac{a^4 b^3}{c^2}

The percentage error in QQ can be calculated using the rule for propagation of errors in multiplication and division.

Step 1. Calculate the fractional error in QQ:

ΔQQ=4Δaa+3Δbb+2Δcc\frac{\Delta Q}{Q} = 4 \frac{\Delta a}{a} + 3 \frac{\Delta b}{b} + 2 \frac{\Delta c}{c}

Step 2. Substitute the given percentage errors:

ΔQQ×100=4(Δaa×100)+3(Δbb×100)+2(Δcc×100)\frac{\Delta Q}{Q} \times 100 = 4 \left( \frac{\Delta a}{a} \times 100 \right) + 3 \left( \frac{\Delta b}{b} \times 100 \right) + 2 \left( \frac{\Delta c}{c} \times 100 \right)

=4×3%+3×4%+2×5%= 4 \times 3\% + 3 \times 4\% + 2 \times 5\%

=12%+12%+10%= 12\% + 12\% + 10\%

Step 3. Calculate the total percentage error in QQ:

Percentage error in Q=12%+12%+10%=34%\text{Percentage error in } Q = 12\% + 12\% + 10\% = 34\%

Thus, the percentage error in QQ is 34%.

The Correct Answer is: 34%