Solveeit Logo

Question

Physics Question on Units and measurement

A physical quantity of the dimensions of length that can be formed out of c, G and e24πε0\frac{e^2}{4 \pi \varepsilon_0} is [c is velocity of light, G is universal constant of gravitation and e is charge] :-

A

c2[Ge24πε0]1/2c^{2}\left[G \frac{e^{2}}{4\pi \varepsilon_{0}}\right]^{1/ 2 }

B

1c2[e2G4πε0]1/2\frac{1}{c^{2}}\left[\frac{e^{2}}{G 4\pi \varepsilon_{0}}\right]^{1/ 2 }

C

1c2Ge24πε0\frac{1}{c^{2}} G \frac{e^{2}}{4\pi \varepsilon_{0}}

D

1c2[Ge24πε0]1/2\frac{1}{c^{2}}\left[G\frac{e^{2}}{ 4\pi \varepsilon_{0}}\right]^{1/ 2 }

Answer

1c2[Ge24πε0]1/2\frac{1}{c^{2}}\left[G\frac{e^{2}}{ 4\pi \varepsilon_{0}}\right]^{1/ 2 }

Explanation

Solution

Let e24πε0=A=ML3T2\frac{e^{2}}{4 \pi \varepsilon_{0}}=A= ML ^{3} T ^{-2}
I=CxGy(A)zI=C^{x} G^{y}(A)^{z}
L=[LT1]x[M1L3T2]y[ML3T2]zL=\left[L T^{-1}\right]^{x}\left[M^{-1} L^{3} T^{-2}\right]^{y}\left[M L^{3} T^{-2}\right]^{z}
y+z=0y=z-y+ z=0 \Rightarrow y=z...(i)
x+3y+3z=1x+3 y+3 z=1...(ii)
x4z=0-x-4 z=0...(iii)
From (i), (ii) & (iii)
z=y=12,x=2z=y=\frac{1}{2}, x=-2