Solveeit Logo

Question

Question: A physical quantity A is related to four observables a, b, c and d as follows, \[A = \dfrac{{{a^2}{b...

A physical quantity A is related to four observables a, b, c and d as follows, A=a2b3cdA = \dfrac{{{a^2}{b^3}}}{{c\sqrt d }}, the percentage error of measurements in a, b, c and d are 1%1\% , 3%3\% , 2%2\% and 2%2\% respectively. What is the percentage error in the quantity A?
A. 12%12\%
B. 7%7\%
C. 5%5\%
D. 14%14\%

Explanation

Solution

Use the formula for the percentage error in the measurement of a physical quantity. This formula gives the relation between the percentage error, absolute error and actual error. Determine the absolute error in the measurement of the four observables and derive the formula for percentage error of four observables. Using these values, determine the total percentage error in the measurement of the physical quantity A.

Formula used:
The percentage error in the measurement of a physical quantity is given by
Percentage error=Absolute errorActual error×100{\text{Percentage error}} = \dfrac{{{\text{Absolute error}}}}{{{\text{Actual error}}}} \times 100 …… (1)

Complete step by step answer:
We have given that the physical quantity A is given by,
A=a2b3cdA = \dfrac{{{a^2}{b^3}}}{{c\sqrt d }}
The percentage error of measurements in a, b, c and d are 1%1\% , 3%3\% , 2%2\% and 2%2\% respectively.The absolute error of measurements in a, b, c and d are Δa\Delta a, Δb\Delta b, Δc\Delta c and Δd\Delta d respectively. From equation (1), the percentage errors in the measurements of a, b, c and d can be written as
1%=Δaa×1001\% = \dfrac{{\Delta a}}{a} \times 100
3%=Δbb×100\Rightarrow 3\% = \dfrac{{\Delta b}}{b} \times 100
2%=Δcc×100\Rightarrow 2\% = \dfrac{{\Delta c}}{c} \times 100
2%=Δdd×100\Rightarrow 2\% = \dfrac{{\Delta d}}{d} \times 100

Let us now calculate the total percentage error in the measurement of the physical quantity A.
ΔAA×100=(2×Δaa×100)+(3×Δbb×100)+(1×Δcc×100)+(12×Δdd×100)\dfrac{{\Delta A}}{A} \times 100 = \left( {2 \times \dfrac{{\Delta a}}{a} \times 100} \right) + \left( {3 \times \dfrac{{\Delta b}}{b} \times 100} \right) + \left( {1 \times \dfrac{{\Delta c}}{c} \times 100} \right) + \left( {\dfrac{1}{2} \times \dfrac{{\Delta d}}{d} \times 100} \right)
Substitute 1%1\% for Δaa×100\dfrac{{\Delta a}}{a} \times 100, 3%3\% for Δbb×100\dfrac{{\Delta b}}{b} \times 100, 2%2\% for Δcc×100\dfrac{{\Delta c}}{c} \times 100 and 2%2\% for Δdd×100\dfrac{{\Delta d}}{d} \times 100 in the above equation.
ΔAA×100=(2×1%)+(3×3%)+(1×2%)+(12×2%)\dfrac{{\Delta A}}{A} \times 100 = \left( {2 \times 1\% } \right) + \left( {3 \times 3\% } \right) + \left( {1 \times 2\% } \right) + \left( {\dfrac{1}{2} \times 2\% } \right)
ΔAA×100=(2%)+(9%)+(2%)+(1%)\Rightarrow \dfrac{{\Delta A}}{A} \times 100 = \left( {2\% } \right) + \left( {9\% } \right) + \left( {2\% } \right) + \left( {1\% } \right)
ΔAA×100=14%\therefore \dfrac{{\Delta A}}{A} \times 100 = 14\%

Therefore, the total error in the measurement of the physical quantity A is 14%14\% . Hence, the correct option is D.

Note: The students may think why the powers of the four observables used in the formula for physical quantity A are used in the formula for determination of total percentage error in the measurement of A. But the students should keep in mind that we should use the multiple factor (power of the variables) which denotes the number of time that observable is used while calculating the total percentage error in measurement of A.