Solveeit Logo

Question

Question: A physical parameter a can be determined by measuring the parameters b, c, d and e using the relatio...

A physical parameter a can be determined by measuring the parameters b, c, d and e using the relation a = bαcβ/dγeδb ^ { \alpha } c ^ { \beta } / d ^ { \gamma } e ^ { \delta } . If the maximum errors in the measurement of b, c, d and e are b1b _ { 1 } %, c1c _ { 1 } %, d1d _ { 1 } % and e1e _ { 1 } %, then the maximum error in the value of a determined by the experiment is

A

(a) (b1+c1+d1+e1b _ { 1 } + c _ { 1 } + d _ { 1 } + e _ { 1 })%

A

(b) ( b1+c1d1e1b _ { 1 } + c _ { 1 } - d _ { 1 } - e _ { 1 } )%

A

(c) ( αb1+βc1γd1δe1\alpha b _ { 1 } + \beta c _ { 1 } - \gamma d _ { 1 } - \delta e _ { 1 } )%

A

(d) ( αb1+βc1+γd1+δe1\alpha b _ { 1 } + \beta c _ { 1 } + \gamma d _ { 1 } + \delta e _ { 1 } )%

Explanation

Solution

(d)

Sol. a=bαcβ/dγeδa = b ^ { \alpha } c ^ { \beta } / d ^ { \gamma } e ^ { \delta }

So maximum error in a is given by

(Δaa×100)max=αΔbb×100+βΔcc×100\left( \frac { \Delta a } { a } \times 100 \right) _ { \max } = \alpha \cdot \frac { \Delta b } { b } \times 100 + \beta \cdot \frac { \Delta c } { c } \times 100

+γΔdd×100+δΔee×100+ \gamma \cdot \frac { \Delta d } { d } \times 100 + \delta \cdot \frac { \Delta e } { e } \times 100

=(αb1+βc1+γd1+δe1)%= \left( \alpha b _ { 1 } + \beta c _ { 1 } + \gamma d _ { 1 } + \delta e _ { 1 } \right) \%