Solveeit Logo

Question

Chemistry Question on Developments Leading to the Bohr’s Model of Atom

A photon of wavelength 4×107m4×10^{–7} m strikes on metal surface, the work function of the metal being 2.13 eV2.13\ eV. Calculate:

  1. the energy of the photon (eV)
  2. the kinetic energy of the emission, and
  3. the velocity of the photo electron (1 eV=1.6020×1019J1\ eV= 1.6020×10^{–19} J).
Answer

(i) Energy (E) of a photon = hν = hcλ\frac {hc}{λ}
Where,
h = Planck's constant = 6.626×10-34 Js
c = velocity of light in vacuum = 3×108 m/s
λ = wavelength of photon = 4 × 10-7 m
Substituting the values in the given expression of E:
E=(6.626×1034)(3×108)4×107E = \frac {(6.626×10^{-34})(3×10^8)}{4×10^{-7}}
E=4.9695×1019 JE= 4.9695×10^{-19}\ J

Hence, the energy of the photon is 4.97×1019J4.97 × 10^{19} J.


(ii) The kinetic energy of emission KEK_E is given by
KE=hvhv0K_E= hv - hv_0
KE=(EW) eVK_E= (E - W)\ eV
KE=(3.10202.13) eVK_E= (3.1020-2.13)\ eV
KE=0.9720 eVK_E= 0.9720 \ eV
Hence, the kinetic energy of emission is 0.97 eV0.97\ eV.


(iii) The velocity of a photoelectron (V) can be calculated by the expression,
12mv2=hvhv0\frac 12 mv^2 = hv - hv_0
v=2(hvhv0)mv = \sqrt {\frac {2(hv - hv_0)}{m}}
Where,
(hvhv0)(hv - hv_0) is the kinetic energy of emission in Joules and
'm' is the mass of the photoelectron.
Substituting the values in the given expression of v:
v=2×(0.9720×1.6020×1019)J9.10939×1031kgv = \sqrt {\frac {2×(0.9720×1.6020×10^{-19})J}{9.10939×10^{-31} kg}}
v=0.3418×1012 m2s2v= \sqrt {0.3418×10^{12}\ m^2 s^{-2}}
v=5.84×105 ms1v = 5.84×10^5\ ms^{-1}

Hence, the velocity of the photoelectron is 5.84×105 ms1.5.84×10^5\ ms^{-1}.