Solveeit Logo

Question

Question: A person standing in an open ground hears the sound of a jet airplane coming from north at angle \({...

A person standing in an open ground hears the sound of a jet airplane coming from north at angle 60{60^ \circ } with ground level. But he finds the airplane vertically above his position. If v is the speed of sound, the speed of the plane is:
A.2v3A. \dfrac{{2v}}{{\sqrt 3 }}
B.vB. v
C.v2C. \dfrac{v}{2}
D.32vD. \dfrac{{\sqrt 3 }}{2}v

Explanation

Solution

The distance travelled by sound will be equal to the distance travelled by the jet airplane. Therefore, if we find the velocity, we will be able to solve the given problem.

Complete step-by-step answer:
Let us consider the angle between the man and the jet airplane is 60{60^ \circ }
Let us assume that the distance between the man and the jet airplane is dd.
The horizontal distance between the man and jet airplane d=cos60d = \cos {60^ \circ }
As the value of the angle of the distance between the man and the jet airplane is cos60\cos {60^ \circ }. We can convert the cos60\cos {60^ \circ } in numbers we get,
d=cos60\Rightarrow d = \cos {60^ \bullet }
12\Rightarrow \dfrac{1}{2}
Let us consider that the jet airplane is flying top of the man and the distance between the triangle and the man forms a triangle shape. Angle between the jet plane and the man is 60{60^ \circ }. We take cos\cos as because the jet is flying high adjacent to the man and since cos\cos is adjacent side by hypotenuse we are considering cos\cos instead of other angles.

Therefore, the horizontal distance between the man and jet airplane d \times \left( {\dfrac{1}{2}} \right)$$$$ = \dfrac{d}{2}
Again, we can say that the distance travelled by sound is equal to the distance between the man and the airplane, that is,
Distance travelled by sound =d2 = \dfrac{d}{2}
Since, in the question it is given that the velocity of sound is v,
The time taken for sound to travel =dv = \dfrac{d}{v} seconds
The sound travels a distance =d2m = \dfrac{d}{2}m= distance travelled by the jet airplane
Time taken by the airplane to cover d2\dfrac{d}{2} distance will be equal to dv\dfrac{d}{v} times time taken by sound to travel
When we divide the distance covered by a jet plane with respect to the time taken by the plane to cover the distance we get the velocity.
Velocity of the jet plane
d2dv\Rightarrow \dfrac{{\dfrac{d}{2}}}{{\dfrac{d}{v}}}
v2\therefore \dfrac{v}{2}

Hence the correct option is (C).

Note: This question uses the concept of relative motion. When we consider a body to have some velocity, then it has to be with respect to a frame of reference. In most cases of everyday life, this frame of reference is taken as the ground or Earth. Relative velocity of object 1 with respect to object 2 is the rate of change of the position of object 1 to object 2. Do not confuse between the distance traveled by the plane and the horizontal distance between the man and the jet airplane.