Solveeit Logo

Question

Question: A person speaks truth 2 out of 3 times. He throws a die and reports that there was a 6. Then the pro...

A person speaks truth 2 out of 3 times. He throws a die and reports that there was a 6. Then the probability that there was actually 3 is

A

2/15

B

3/15

C

1/15

D

4/15

Answer

1/15

Explanation

Solution

P(E1) = 16\frac { 1 } { 6 } ; P(E2) = P(E3) ; P(E4) = P(E5) ; P(E6) = 16\frac { 1 } { 6 }

Let E be event of reporting 6

P(E/E1) = 13×15\frac { 1 } { 3 } \times \frac { 1 } { 5 }P(E/E2) = 13×15\frac { 1 } { 3 } \times \frac { 1 } { 5 }; P(E/E3) = 115\frac { 1 } { 15 }

P(E/E4) = 115\frac { 1 } { 15 }P(E/E5) = 115\frac { 1 } { 15 }; P(E/E6) = 23\frac { 2 } { 3 }

P(E3/E) =16×11516×115+16×115+16×15+16×15+16×23\frac { \frac { 1 } { 6 } \times \frac { 1 } { 15 } } { \frac { 1 } { 6 } \times \frac { 1 } { 15 } + \frac { 1 } { 6 } \times \frac { 1 } { 15 } + \frac { 1 } { 6 \times 15 } + \frac { 1 } { 6 \times 15 } + \frac { 1 } { 6 } \times \frac { 2 } { 3 } }

= 190590+1090=115\frac { \frac { 1 } { 90 } } { \frac { 5 } { 90 } + \frac { 10 } { 90 } } = \frac { 1 } { 15 } .