Solveeit Logo

Question

Question: A person moves 30 m north and then 20 m towards east and finally \(30\sqrt{2}\) m in south-west dire...

A person moves 30 m north and then 20 m towards east and finally 30230\sqrt{2} m in south-west direction. The displacement of the person from the origin will be

A

10 m along north

B

10 m long south

C

10 m along west

D

Zero

Answer

10 m along west

Explanation

Solution

From figure, OA=06mui+306muj\overset{\rightarrow}{OA} = 0\mspace{6mu}\overset{\rightarrow}{i} + 30\mspace{6mu}\overset{\rightarrow}{j}, AB=206mui+06muj\overset{\rightarrow}{AB} = 20\mspace{6mu}\overset{\rightarrow}{i} + 0\mspace{6mu}\overset{\rightarrow}{j}

BC=3026mucos45oi3026musin45oj\overset{\rightarrow}{BC} = - 30\sqrt{2}\mspace{6mu} cos45^{o}\overset{\rightarrow}{i} - 30\sqrt{2}\mspace{6mu}\sin 45^{o}\overset{\rightarrow}{j} =306mui306muj= - 30\mspace{6mu}\overset{\rightarrow}{i} - 30\mspace{6mu}\overset{\rightarrow}{j}

∴ Net displacement, OC=OA+AB+BC=106mui+06muj\overset{\rightarrow}{OC} = \overset{\rightarrow}{OA} + \overset{\rightarrow}{AB} + \overset{\rightarrow}{BC} = - 10\mspace{6mu}\overset{\rightarrow}{i} + 0\mspace{6mu}\overset{\rightarrow}{j}

OC6mu=106mum.|\overset{\rightarrow}{OC}|\mspace{6mu} = 10\mspace{6mu} m.