Solveeit Logo

Question

Physics Question on Oscillations

A person measures the time period of a simple pendulum inside a stationary lift and finds it to be TT. If the lift starts accelerating upwards with an acceleration g/3g/3, the time period of the pendulum will be

A

3T\sqrt{3}T

B

T/3T/\sqrt{3}

C

3T2\frac{\sqrt{3}T}{2}

D

T/3T/3

Answer

3T2\frac{\sqrt{3}T}{2}

Explanation

Solution

Time period of the simple pendulum in the lift
T=2πlgaT=2 \pi \sqrt{\frac{l}{g a}}
Time period when lift starts accelerating upwards with acceleration g/3g / 3
T=2πlg+g3T=2 \pi \sqrt{\frac{l}{g+\frac{g}{3}}}
T=2π×3l4gT=2 \pi \times \sqrt{3} \sqrt{\frac{l}{4 g}}
or T=2plg×32T=2 p \sqrt{\frac{l}{g}} \times \frac{\sqrt{3}}{2}
or T=32TT=\frac{\sqrt{3}}{2} T