Solveeit Logo

Question

Question: A perpendicular is drawn from a point lying on \(\dfrac{x-1}{2}=\dfrac{y+1}{-1}=\dfrac{z}{1}\) to th...

A perpendicular is drawn from a point lying on x12=y+11=z1\dfrac{x-1}{2}=\dfrac{y+1}{-1}=\dfrac{z}{1} to the plane x + y + z = 3 such that the foot of the perpendicular Q lies on the plane x – y + z = 3. Then the coordinate of Q are
( a ) ( 2, 0, 1 )
( b ) ( 4, 0, -1 )
( c ) ( -1, 0, 4 )
( d ) ( 1, 0, 2 )

Explanation

Solution

Firstly we will find the general point on line x12=y+11=z1=k\dfrac{x-1}{2}=\dfrac{y+1}{-1}=\dfrac{z}{1}=k in terms of k and then using concept of perpendicular line and plane condition that is x1x2a=y1y2b=z1z2c=(ax2+by2+cz2+d)a2+b2+c2\dfrac{{{x}_{1}}-{{x}_{2}}}{a}=\dfrac{{{y}_{1}}-{{y}_{2}}}{b}=\dfrac{{{z}_{1}}-{{z}_{2}}}{c}=-\dfrac{(a{{x}_{2}}+b{{y}_{2}}+c{{z}_{2}}+d)}{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}, we will find coordinates of Q in terms of k and then we will find value of k by putting coordinates of Q in equation x – y + z = 3, then we will substitute values of k in coordinates of Q in terms of k to get numerical coordinates of Q

Complete step-by-step answer:
We know that, the standard form of equation xad=ybe=zcf\dfrac{x-a}{d}=\dfrac{y-b}{e}=\dfrac{z-c}{f}, where d, e, f are direction ratios and ( a, b, c ) lying on line.
Now, we are given that perpendicular is drawn from a point lying on x12=y+11=z1\dfrac{x-1}{2}=\dfrac{y+1}{-1}=\dfrac{z}{1} to the plane x + y + z = 3 such that the foot of the perpendicular Q lies on the plane x – y + z = 3.
So, let point P be the point on line x12=y+11=z1=k\dfrac{x-1}{2}=\dfrac{y+1}{-1}=\dfrac{z}{1}=k, then coordinates of the point P of form P( 2k + 1, -k – 1, k ) where, we have point x =2k + 1, y = -k – 1, z = k .
Now, as PQ is the perpendicular where Q lies on the plane x + y +z = 3
So, let coordinates of Q be Q(x1,y1,z1)Q\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)
Now, if line AB and plane ax + by + cz + d = 0 are perpendicular then, we have
x1x2a=y1y2b=z1z2c=(ax2+by2+cz2+d)a2+b2+c2\dfrac{{{x}_{1}}-{{x}_{2}}}{a}=\dfrac{{{y}_{1}}-{{y}_{2}}}{b}=\dfrac{{{z}_{1}}-{{z}_{2}}}{c}=-\dfrac{(a{{x}_{2}}+b{{y}_{2}}+c{{z}_{2}}+d)}{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}, where (x1{{x}_{1}},y1{{y}_{1}},z1{{z}_{1}}) is coordinate of point B on both plane and straight line and (x2{{x}_{2}},y2{{y}_{2}},z2{{z}_{2}}) is coordinate of point A.
Now, as line PQ and equation of plane are perpendicular to each other so, we can say that
x12k11=y1+k+11=z1+k1=(2k + 1+(k 1)+k)12+12+12\dfrac{{{x}_{1}}-2k-1}{1}=\dfrac{{{y}_{1}}+k+1}{1}=\dfrac{{{z}_{1}}+k}{1}=-\dfrac{(2k\text{ }+\text{ }1+(-k\text{ }1)+k)}{{{1}^{2}}+{{1}^{2}}+{{1}^{2}}}, where x1{{x}_{1}},y1{{y}_{1}},z1{{z}_{1}} are coordinates of Q and x2+y2+z23{{x}_{2}}+{{y}_{2}}+{{z}_{2}}-3is equation plane to which line PQ are perpendicular.
On solving we get,
x12k11=y1+k+11=z1+k1=32k3\dfrac{{{x}_{1}}-2k-1}{1}=\dfrac{{{y}_{1}}+k+1}{1}=\dfrac{{{z}_{1}}+k}{1}=\dfrac{3-2k}{3}
Now, comparing x coordinate of Q, we get
x12k11=32k3\dfrac{{{x}_{1}}-2k-1}{1}=\dfrac{3-2k}{3}
On solving we get,
x1=6+4k3{{x}_{1}}=\dfrac{6+4k}{3}
Now, comparing y coordinate of Q, we get
y1+k+11=32k3\dfrac{{{y}_{1}}+k+1}{1}=\dfrac{3-2k}{3}
On solving we get,
y1=5k3{{y}_{1}}=-\dfrac{5k}{3}
Now, comparing y coordinate of Q, we get
z1+k1=32k3\dfrac{{{z}_{1}}+k}{1}=\dfrac{3-2k}{3}
On solving we get,
z1=3+k3{{z}_{1}}=\dfrac{3+k}{3}
So, we have Q(6+4k3,5k3,3+k3)Q\left( \dfrac{6+4k}{3},-\dfrac{5k}{3},\dfrac{3+k}{3} \right) as x1{{x}_{1}},y1{{y}_{1}},z1{{z}_{1}} are coordinates of Q.
Now, as point Q lies on plane x - y + z = 3, so point Q will satisfy the equation plane, then
6+4k3(5k3)+3+k3=3\dfrac{6+4k}{3}-\left( -\dfrac{5k}{3} \right)+\dfrac{3+k}{3}=3
On solving we get
6 + 4k + 5k + 3 + k = 9
Or, k = 0
So, coordinates of Q will be Q(6+4(0)3,5(0)3,3+(0)3)Q\left( \dfrac{6+4(0)}{3},-\dfrac{5(0)}{3},\dfrac{3+(0)}{3} \right)
Or, Q(2, 0, 1 )

So, the correct answer is “Option A”.

Note: Always convert the equation of line firstly to standard line equation which is xad=ybe=zcf\dfrac{x-a}{d}=\dfrac{y-b}{e}=\dfrac{z-c}{f}, where d, e, f are direction ratios and ( a, b, c ) lying on line. Also, remember that if line AB and plane ax + by + cz + d = 0 are perpendicular then, we have
x1x2a=y1y2b=z1z2c=(ax2+by2+cz2+d)a2+b2+c2\dfrac{{{x}_{1}}-{{x}_{2}}}{a}=\dfrac{{{y}_{1}}-{{y}_{2}}}{b}=\dfrac{{{z}_{1}}-{{z}_{2}}}{c}=-\dfrac{(a{{x}_{2}}+b{{y}_{2}}+c{{z}_{2}}+d)}{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}, where (x1{{x}_{1}},y1{{y}_{1}},z1{{z}_{1}}) is coordinate of point B on both plane and straight line and (x2{{x}_{2}},y2{{y}_{2}},z2{{z}_{2}}) is coordinate of point A. Avoid calculation error while solving the question.