Solveeit Logo

Question

Physics Question on Oscillations

A pendulum of length 1 m is released from θ\theta = 60^{\circ}. The rate of change of speed of the bob at θ\theta= 30^{\circ} is (g=10ms1)(g=10 \, ms^{-1})

A

10ms210\, ms^{-2}

B

7.5ms27.5\, ms^{-2}

C

5ms25\, ms^{-2}

D

53ms25\sqrt 3\, ms^{-2}

Answer

5ms25\, ms^{-2}

Explanation

Solution

For a simple pendulum time period
T=2πlg\, \, \, \, \, \, \, \, \, T=2\pi\sqrt{\frac{l}{g}}
or 2πT=gl \, \, \, \, \, \, \, \, \frac{2\pi}{T} =\sqrt{\frac{g}{l}}
ω=gl\therefore \, \, \, \, \, \, \, \, \, \omega=\sqrt{\frac{g}{l}}
ω2=gl\, \, \, \, \, \, \, \, \, \, \omega^2 =\frac{g}{l}
Amplitude, when angular displacement is 60^{\circ}
=2πl360×60=2πl6\, \, \, \, \, \, \, \, \, \, =\frac{2\pi l}{360^{\circ}} \times 60^{\circ} =\frac{2\pi l}{6}
Therefore, displacement when angular displacement is 30^{\circ}
=12(2πl6)\, \, \, \, \, \, \, \, \, \, \, \, \, =\frac{1}{2}\bigg(\frac{2\pi l}{6}\bigg)
y=πl6\, \, \, \, \, \, \, \, \, \, \, \, y=\frac{\pi l}{6} \, \, \, \, \, \, \, \, \, \, \,... (ii)
Acceleration (a) = -ω2y\omega^2 y
Using Eqs. (i) and (ii), we get
a=gl×πl6\, \, \, \, \, \, \, \, \, \, a=-\frac{g}{l} \times \frac{\pi l}{6}
=10×3.146\, \, \, \, \, \, \, \, \, \, \, =-\frac{10 \times 3.14}{6}
=5.2ms2=5ms2\, \, \, \, \, \, \, \, \, \, \, =-5.2 ms^{-2} =-5ms^{-2}