Solveeit Logo

Question

Physics Question on Oscillations

A pendulum made of a uniform wire of cross sectional area AA has time period TT. When an additional mass MM is added to its bob, the time period changes to TMT_M. If the Young's modulus of the material of the wire is YY then 1Y\frac{1}{Y} is equal to ( g=g = gravitational acceleration)

A

[(TMT)21]AMg\left[\left(\frac{T_{M}}{T}\right)^{2}-1\right] \frac{A}{Mg}

B

[(TMT)21]MgA\left[\left(\frac{T_{M}}{T}\right)^{2}-1\right] \frac{Mg}{A}

C

[1(TMT)2]AMg\left[1-\left(\frac{T_{M}}{T}\right)^{2}\right] \frac{A}{Mg}

D

[1(TTM)2]AMg\left[1-\left(\frac{T}{T_{M}}\right)^{2}\right] \frac{A}{Mg}

Answer

[(TMT)21]AMg\left[\left(\frac{T_{M}}{T}\right)^{2}-1\right] \frac{A}{Mg}

Explanation

Solution

T=2πg;TM=2πgT =2 \pi \sqrt{\frac{\ell}{ g }} ; T _{ M }=2 \pi \sqrt{\frac{\ell'}{ g }}
γ=Mg/AΔ/\gamma=\frac{ Mg / A }{\Delta \ell / \ell}
=MgγA==1+MgγA\Rightarrow \frac{\ell'-\ell}{\ell}=\frac{ Mg }{\gamma A }=\frac{\ell'}{\ell}=1+\frac{ Mg }{\gamma A }
Also:
TMT=TM=T[1+MgγA]1/2\frac{T_{M}}{T}=\sqrt{\frac{\ell'}{\ell}} \,\,\,\,\,\,\therefore T_{M}=T\left[1+\frac{M g}{\gamma A}\right]^{1 / 2}
TM2T2=1+MgγA\Rightarrow \frac{T_{M}^{2}}{T^{2}}=1+\frac{M g}{\gamma A}
[TM2T21]=MgγA\Rightarrow\left[\frac{T_{M}^{2}}{T^{2}}-1\right]=\frac{M g}{\gamma A}
1γ=AMg[(TMT)21]\Rightarrow \frac{1}{\gamma}=\frac{A}{M g}\left[\left(\frac{T_{M}}{T}\right)^{2}-1\right]