Solveeit Logo

Question

Physics Question on Oscillations

A pendulum is undergoing SHM with frequency ff . What is the frequency of its kinetic energy?

A

f/2

B

2f

C

3f

D

4f

Answer

2f

Explanation

Solution

Let, x=Asinωtx=A \sin \omega t
v=dxdt=Aωcosωtv=\frac{d x}{d t}=A \omega \cos \omega t
Kinetic energy, K=12mv2K =\frac{1}{2} mv ^{2}
K=12mω2A2cos2ωt\Rightarrow K =\frac{1}{2} m \omega^{2} A ^{2} \cos ^{2} \omega t
K=12mω2A2(1+cos2ωt2)\Rightarrow K =\frac{1}{2} m \omega^{2} A ^{2}\left(\frac{1+\cos 2 \omega t }{2}\right)
K=14mω2A2(1+cos2ωt)\Rightarrow K =\frac{1}{4} m \omega^{2} A ^{2}\left(1+\cos ^{2} \omega t \right)
ωK=2ω\therefore \omega_{ K }=2 \omega
\therefore Frequency of oscillation of KE=2f[f=ω2π]K \cdot E=2 f \left[f=\frac{\omega}{2 \pi}\right]
So, the correct option is (B) : 2f.