Solveeit Logo

Question

Question: A pendulum clock keeps correct time at 0°C. Its mean coefficient of linear expansions is \(\alpha/{^...

A pendulum clock keeps correct time at 0°C. Its mean coefficient of linear expansions is α/C\alpha/{^\circ}C, then the loss in seconds per day by the clock if the temperature rises by t°C is

A

12αt×8640001αt2\frac{\frac{1}{2}\alpha t \times 864000}{1 - \frac{\alpha t}{2}}

B

12αt×86400\frac{1}{2}\alpha t \times 86400

C

12αt×86400(1αt2)2\frac{\frac{1}{2}\alpha t \times 86400}{\left( 1 - \frac{\alpha t}{2} \right)^{2}}

D

12αt×864001+αt2\frac{\frac{1}{2}\alpha t \times 86400}{1 + \frac{\alpha t}{2}}

Answer

12αt×86400\frac{1}{2}\alpha t \times 86400

Explanation

Solution

Loss in time per second ΔTT=12αΔθ=12α(t0)\frac{\Delta T}{T} = \frac{1}{2}\alpha\Delta\theta = \frac{1}{2}\alpha(t - 0)

⇒ loss in time per day

Δt=(12αt)t=12αt×(24×60×60)=12αt×86400\Delta t = \left( \frac{1}{2}\alpha t \right)t = \frac{1}{2}\alpha t \times (24 \times 60 \times 60) = \frac{1}{2}\alpha t \times 86400