Solveeit Logo

Question

Question: A pendulum clock gives correct time at 20°C at a place where g = 9.800 m/s². It is taken to a place ...

A pendulum clock gives correct time at 20°C at a place where g = 9.800 m/s². It is taken to a place where g = 9.788 m/s². If it will give correct time at temperature 'T' kelvin. Write the value of T1160\frac{T-11}{60} in OMR sheet.

Coefficient of linear expansion of pendulum = 12 x 10⁻⁶/°C.

Answer

3

Explanation

Solution

The time period of a simple pendulum is given by T=2πLgT = 2\pi \sqrt{\frac{L}{g}}. For the pendulum clock to give correct time, its time period must be constant.

Let T1=20CT_1 = 20^\circ C and g1=9.800m/s2g_1 = 9.800 \, m/s^2. Let the length of the pendulum at T1T_1 be L1L_1. The time period is T1=2πL1g1T_1 = 2\pi \sqrt{\frac{L_1}{g_1}}.

The clock is moved to a place where g2=9.788m/s2g_2 = 9.788 \, m/s^2. The temperature is TT Kelvin. Let the temperature in Celsius be TC=T273T_C = T - 273. The length of the pendulum at temperature TCT_C is L2L_2. The relationship between L1L_1 and L2L_2 due to thermal expansion is L2=L1(1+α(TCT1))L_2 = L_1 (1 + \alpha (T_C - T_1)), where α\alpha is the coefficient of linear expansion. The time period at the new location and temperature is T2=2πL2g2T_2 = 2\pi \sqrt{\frac{L_2}{g_2}}.

For the clock to give correct time, the time period must remain the same, i.e., T1=T2T_1 = T_2. 2πL1g1=2πL2g22\pi \sqrt{\frac{L_1}{g_1}} = 2\pi \sqrt{\frac{L_2}{g_2}} Squaring both sides, we get L1g1=L2g2\frac{L_1}{g_1} = \frac{L_2}{g_2}. Substitute L2=L1(1+α(TCT1))L_2 = L_1 (1 + \alpha (T_C - T_1)): L1g1=L1(1+α(TCT1))g2\frac{L_1}{g_1} = \frac{L_1 (1 + \alpha (T_C - T_1))}{g_2} Assuming L10L_1 \neq 0, we can cancel L1L_1: 1g1=1+α(TCT1)g2\frac{1}{g_1} = \frac{1 + \alpha (T_C - T_1)}{g_2} g2=g1(1+α(TCT1))g_2 = g_1 (1 + \alpha (T_C - T_1)) g2g1=1+α(TCT1)\frac{g_2}{g_1} = 1 + \alpha (T_C - T_1) g2g11=α(TCT1)\frac{g_2}{g_1} - 1 = \alpha (T_C - T_1) g2g1g1=α(TCT1)\frac{g_2 - g_1}{g_1} = \alpha (T_C - T_1) TCT1=g2g1αg1T_C - T_1 = \frac{g_2 - g_1}{\alpha g_1}

Given values: T1=20CT_1 = 20^\circ C g1=9.800m/s2g_1 = 9.800 \, m/s^2 g2=9.788m/s2g_2 = 9.788 \, m/s^2 α=12×106/C\alpha = 12 \times 10^{-6} \, /^\circ C

TC20=9.7889.800(12×106)×9.800T_C - 20 = \frac{9.788 - 9.800}{(12 \times 10^{-6}) \times 9.800} TC20=0.01212×106×9.8T_C - 20 = \frac{-0.012}{12 \times 10^{-6} \times 9.8} TC20=12×10312×106×9.8T_C - 20 = \frac{-12 \times 10^{-3}}{12 \times 10^{-6} \times 9.8} TC20=103106×9.8=1039.8=10009.8T_C - 20 = \frac{-10^{-3}}{10^{-6} \times 9.8} = \frac{-10^3}{9.8} = -\frac{1000}{9.8}

To get the temperature in Kelvin TT, we use T=TC+273T = T_C + 273. T=(2010009.8)+273T = \left(20 - \frac{1000}{9.8}\right) + 273 T=29310009.8T = 293 - \frac{1000}{9.8}

We need to calculate the value of T1160\frac{T-11}{60}. T1160=(29310009.8)1160\frac{T-11}{60} = \frac{\left(293 - \frac{1000}{9.8}\right) - 11}{60} T1160=28210009.860\frac{T-11}{60} = \frac{282 - \frac{1000}{9.8}}{60}

T1160=282102.0460\frac{T-11}{60} = \frac{282 - 102.04}{60} T1160=18060=3\frac{T-11}{60} = \frac{180}{60} = 3

Therefore, T1160=3\frac{T-11}{60} = 3.