Solveeit Logo

Question

Physics Question on projectile motion

A passenger in an open car travelling at 30m/s30\, m / s throws a ball out over the bonnet. Relative to the car the initial velocity of the ball is 20m/s20 m / s at 6060^{\circ} to the horizontal. The angle of projection of the ball with respect to the horizontal road will be :

A

tan1(23)\tan^{-1} \left(\frac{2}{3}\right)

B

tan1(34)\tan^{-1} \left(\frac{\sqrt{3}}{4}\right)

C

tan1(43)\tan^{-1} \left(\frac{4}{\sqrt{3}}\right)

D

tan1(34)\tan^{-1} \left(\frac{3}{4}\right)

Answer

tan1(34)\tan^{-1} \left(\frac{\sqrt{3}}{4}\right)

Explanation

Solution

Vcar =30msiV _{ \text{car }}=30\, m'si Vgcar =20cos601^+20sin601^V _{ g \rightarrow \text{car }}=20 \cos 60^{\circ} \hat{1}+20 \sin 60^{\circ} \hat{1} Vbcar =10i+103i^V _{ b \rightarrow \text{car }}=10 i +10 \sqrt{3} \hat{i} Vb earth =Vbcar+Ccar  earth \Rightarrow V _{ b \rightarrow \text { earth }}= V _{ b \rightarrow \text{car} }+ C _{\text {car } \rightarrow \text { earth }} =10i^+103i^+(+30i^)=10 \hat{i}+10 \sqrt{3} \hat{i}+(+30 \hat{i}) =+40i^+103i^=+40 \hat{i}+10 \sqrt{3} \hat{i} \Rightarrow Angle from horizontal θ=tan1yx\theta=\tan ^{-1} \frac{y}{x} θ=tan110340\theta=\tan ^{-1} \frac{10 \sqrt{3}}{40} θ=tan134.\theta=\tan ^{-1} \frac{\sqrt{3}}{4} .