Question
Mathematics Question on Differential equations
A particular solution of dxdy=(x+9y)2 when x=0,y=271 is
A
3x+27y=tan3(x+12π)
B
3x+27y=tan−13(x+12π)
C
3x+27y=tan9(x+12π)
D
3x+27y=tan(x+12π)
Answer
3x+27y=tan3(x+12π)
Explanation
Solution
We have , dxdy=(x+9y)2 ....(i)
Put x+9y=t⇒1+9dxdy=dxdt
Now (i) becomes
⇒dxdt−1=9t2⇒9t2+1dt=dx
⇒91∫t2+91dt=∫dx+C
⇒91×3tan−1(3t)=x+C
⇒31tan−1(3x+27y)=x+C .....(ii)
Now, x=0,y=271
⇒31tan−1(1)=0+C⇒C=12π
So (ii) becomes
∴31tan−1(3x+27y)=x+12π
⇒3x+27y=tan3(x+12π)