Solveeit Logo

Question

Mathematics Question on Differential equations

A particular solution of dydx=(x+9y)2 \frac{dy}{dx} = (x+9y)^2 when x=0,y=127 x = 0, y = \frac{1}{27} is

A

3x+27y=tan3(x+π12)3x+27y = \tan 3\left(x+\frac{\pi}{12}\right)

B

3x+27y=tan13(x+π12)3x+27y = \tan^{-1} 3\left(x+\frac{\pi}{12}\right)

C

3x+27y=tan9(x+π12)3x+27y = \tan 9\left(x+\frac{\pi}{12}\right)

D

3x+27y=tan(x+π12)3x+27y = \tan \left(x+\frac{\pi}{12}\right)

Answer

3x+27y=tan3(x+π12)3x+27y = \tan 3\left(x+\frac{\pi}{12}\right)

Explanation

Solution

We have , dydx=(x+9y)2\frac{dy}{dx} =\left(x+9y\right)^{2} ....(i)
Put x+9y=t1+9dydx=dtdxx+9y =t \Rightarrow1+9 \frac{dy}{dx} =\frac{dt}{dx}
Now (i) becomes
dtdx1=9t2dt9t2+1=dx\Rightarrow \frac{dt}{dx} -1=9t^{2} \Rightarrow \frac{dt}{9t^{2}+1}=dx
19dtt2+19=dx+C\Rightarrow \frac{1}{9}\int\frac{dt}{t^{2}+\frac{1}{9}}=\int dx+C
19×3tan1(3t)=x+C\Rightarrow \frac{1}{9} \times3 \tan^{-1}\left(3t\right) =x +C
13tan1(3x+27y)=x+C\Rightarrow \frac{1}{3} \tan^{-1} \left(3x +27y\right) = x +C .....(ii)
Now, x=0,y=127x = 0, y = \frac{1}{27}
13tan1(1)=0+CC=π12\Rightarrow \frac{1}{3} \tan^{-1}\left(1\right)= 0+C \Rightarrow C = \frac{\pi}{12}
So (ii) becomes
13tan1(3x+27y)=x+π12\therefore \:\:\: \frac{1}{3} \tan^{-1}\left(3x + 27 y\right) =x+\frac{\pi}{12}
3x+27y=tan3(x+π12)\Rightarrow 3x+27y =\tan 3\left(x + \frac{\pi}{12}\right)