Solveeit Logo

Question

Question: A particle strikes a horizontal frictionless floor with a speed $u$, at an angle $\theta$ to the ver...

A particle strikes a horizontal frictionless floor with a speed uu, at an angle θ\theta to the vertical, and rebounds with a speed vv, at an angle ϕ\phi to the vertical. The coefficient of restitution between the particle and the floor is ee. The magnitude of vv is

In the previous question the angle ϕ\phi is equal to

A

eueu

B

(1e)u(1-e)u

C

usin2θ+e2cos2θu\sqrt{sin^2\theta + e^2cos^2\theta}

D

ue2sin2θ+cos2θu\sqrt{e^2sin^2\theta + cos^2\theta}

Answer

c

Explanation

Solution

The problem involves an oblique collision of a particle with a horizontal frictionless floor. We need to determine the magnitude of the rebound velocity (vv) and the angle of rebound (ϕ\phi) with the vertical.

Let the initial velocity be u\vec{u} and the final velocity be v\vec{v}. The angles θ\theta and ϕ\phi are given with respect to the vertical.

1. Resolve velocities into components: Let the horizontal direction be x and the vertical direction be y. Initial velocity components:

  • Horizontal component: ux=usinθu_x = u \sin\theta
  • Vertical component: uy=ucosθu_y = u \cos\theta (downwards)

Final velocity components:

  • Horizontal component: vx=vsinϕv_x = v \sin\phi
  • Vertical component: vy=vcosϕv_y = v \cos\phi (upwards)

2. Apply collision principles:

  • Conservation of momentum in the horizontal direction: Since the floor is frictionless, there is no impulsive force in the horizontal direction. Therefore, the horizontal component of the particle's velocity remains unchanged. ux=vxu_x = v_x usinθ=vsinϕ(1)u \sin\theta = v \sin\phi \quad \dots (1)

  • Coefficient of restitution (ee) in the vertical direction: The coefficient of restitution relates the relative velocity of separation to the relative velocity of approach along the common normal (which is the vertical direction here). The floor is stationary. e=relative velocity of separationrelative velocity of approach=vyuye = \frac{\text{relative velocity of separation}}{\text{relative velocity of approach}} = \frac{v_y}{u_y} vy=euyv_y = e u_y vcosϕ=eucosθ(2)v \cos\phi = e u \cos\theta \quad \dots (2)

3. Calculate the magnitude of vv: To find vv, square equations (1) and (2) and add them: (vsinϕ)2+(vcosϕ)2=(usinθ)2+(eucosθ)2(v \sin\phi)^2 + (v \cos\phi)^2 = (u \sin\theta)^2 + (e u \cos\theta)^2 v2sin2ϕ+v2cos2ϕ=u2sin2θ+e2u2cos2θv^2 \sin^2\phi + v^2 \cos^2\phi = u^2 \sin^2\theta + e^2 u^2 \cos^2\theta v2(sin2ϕ+cos2ϕ)=u2(sin2θ+e2cos2θ)v^2 (\sin^2\phi + \cos^2\phi) = u^2 (\sin^2\theta + e^2 \cos^2\theta) Using the trigonometric identity sin2α+cos2α=1\sin^2\alpha + \cos^2\alpha = 1: v2=u2(sin2θ+e2cos2θ)v^2 = u^2 (\sin^2\theta + e^2 \cos^2\theta) v=usin2θ+e2cos2θv = u \sqrt{\sin^2\theta + e^2 \cos^2\theta}

4. Calculate the angle ϕ\phi: To find ϕ\phi, divide equation (1) by equation (2): vsinϕvcosϕ=usinθeucosθ\frac{v \sin\phi}{v \cos\phi} = \frac{u \sin\theta}{e u \cos\theta} tanϕ=1esinθcosθ\tan\phi = \frac{1}{e} \frac{\sin\theta}{\cos\theta} tanϕ=1etanθ\tan\phi = \frac{1}{e} \tan\theta ϕ=tan1[1etanθ]\phi = \tan^{-1}\left[\frac{1}{e} \tan\theta\right]

The magnitude of vv is usin2θ+e2cos2θu\sqrt{\sin^2\theta + e^2\cos^2\theta}, which corresponds to option (c) for the first part. The angle ϕ\phi is tan1[1etanθ]\tan^{-1}\left[\frac{1}{e}\tan\theta\right], which corresponds to option (c) for the second part.