Solveeit Logo

Question

Question: A particle starts simple harmonic motion from the mean position. Its amplitude is a and total energy...

A particle starts simple harmonic motion from the mean position. Its amplitude is a and total energy E. At one instant its kinetic energy is 3E/4.3E/4. Its displacement at that instant is

A

1/2\mathbf{1/}\sqrt{\mathbf{2}}

B

a/2\mathbf{a/2}

C

a3/2\frac{\mathbf{a}}{\sqrt{\mathbf{3/2}}}

D

a/3\mathbf{a/}\sqrt{\mathbf{3}}

Answer

a/2\mathbf{a/2}

Explanation

Solution

KE=12mω2(a2y2)12mω2a2=a2y2a2=1y2a2\frac{K}{E} = \frac{\frac{1}{2}m\omega^{2}(a^{2} - y^{2})}{\frac{1}{2}m\omega^{2}a^{2}} = \frac{a^{2} - y^{2}}{a^{2}} = 1 - \frac{y^{2}}{a^{2}}

So, (3E4)E=1y2a2y2a2=134=14y=a2\frac{\left( \frac{3E}{4} \right)}{E} = 1 - \frac{y^{2}}{a^{2}} \Rightarrow \frac{y^{2}}{a^{2}} = 1 - \frac{3}{4} = \frac{1}{4} \Rightarrow y = \frac{a}{2}.