Solveeit Logo

Question

Question: A particle starts moving at $t = 0$ from origin along the (+ve) direction of x-axis. Its speed depen...

A particle starts moving at t=0t = 0 from origin along the (+ve) direction of x-axis. Its speed depends on the distance travelled xx as v=Kxv = K\sqrt{x}. If v=dxdtv = \frac{dx}{dt} and a=dvdta = \frac{dv}{dt}, then find xx, vv and aa in terms of time tt.

A

Kt24\frac{Kt^2}{4}, Kt2\frac{Kt}{2}, K2\frac{K}{2}

B

K2t24\frac{K^2t^2}{4}, K2t2\frac{K^2t}{2}, K22\frac{K^2}{2}

C

Kt24\frac{Kt^2}{4}, Kt22\frac{Kt^2}{2}, K22\frac{K^2}{2}

D

K2t24\frac{K^2t^2}{4}, Kt2\frac{Kt}{2}, K22\frac{K^2}{2}

Answer

K2t24\frac{K^2t^2}{4}, K2t2\frac{K^2t}{2}, K22\frac{K^2}{2}

Explanation

Solution

We are given:

dxdt=Kx.\frac{dx}{dt}=K\sqrt{x}.

Separate variables:

dxx=Kdt.\frac{dx}{\sqrt{x}} = K\, dt.

Integrate:

dxx=Kdt2x=Kt.\int \frac{dx}{\sqrt{x}} = \int K\, dt \quad\Longrightarrow\quad 2\sqrt{x} = Kt.

Thus,

x=Kt2x=K2t24.\sqrt{x} = \frac{Kt}{2}\quad\Longrightarrow\quad x = \frac{K^2t^2}{4}.

Find velocity vv:

v=dxdt=ddt(K2t24)=K2t2.v = \frac{dx}{dt} = \frac{d}{dt}\left(\frac{K^2t^2}{4}\right)=\frac{K^2t}{2}.

Also, verifying with v=Kxv=K\sqrt{x}:

v=K(Kt2)=K2t2.v=K\left(\frac{Kt}{2}\right)=\frac{K^2t}{2}.

Find acceleration aa:

a=dvdt=ddt(K2t2)=K22.a = \frac{dv}{dt} = \frac{d}{dt}\left(\frac{K^2t}{2}\right)= \frac{K^2}{2}.

Thus, we have:

x=K2t24,v=K2t2,a=K22.x=\frac{K^2t^2}{4},\quad v=\frac{K^2t}{2},\quad a=\frac{K^2}{2}.