Solveeit Logo

Question

Question: A particle starts from the origin with velocity \[\sqrt {44} \,{\text{m}} \cdot {{\text{s}}^{ - 1}}\...

A particle starts from the origin with velocity 44ms1\sqrt {44} \,{\text{m}} \cdot {{\text{s}}^{ - 1}}s on a straight horizontal road. Its acceleration varies with displacement as shown. The velocity of the particle as it passes through the position x=0.2kmx = 0.2\,{\text{km}} is:

A. 16ms116\,{\text{m}} \cdot {{\text{s}}^{ - 1}}
B. 18ms118\,{\text{m}} \cdot {{\text{s}}^{ - 1}}
C. 20ms120\,{\text{m}} \cdot {{\text{s}}^{ - 1}}
D. 22ms122\,{\text{m}} \cdot {{\text{s}}^{ - 1}}

Explanation

Solution

Derive a relation between the area under the curve and velocity of the particle. Determine the area under the curve and equate it with the integration of the velocity term with respect to velocity. Integrate the velocity terms from initial velocity to the required final velocity and solve it to obtain the required velocity of the particle.

Formula used:
The acceleration aa of an object is
a=dvdta = \dfrac{{dv}}{{dt}}
Here, dvdv is the change in velocity of the object in time dtdt.
The velocity vv of an object is
v=dxdtv = \dfrac{{dx}}{{dt}}
Here, dxdx is the change in displacement of the object in time dtdt.

Complete step by step solution:
We have given that a particle starts from the origin with initial velocity 44ms1\sqrt {44} \,{\text{m}} \cdot {{\text{s}}^{ - 1}}.
We need to determine the velocity of the particle at the position x=0.2kmx = 0.2\,{\text{km}} of the particle.
The area AA under the acceleration-displacement curve of the particle is given by
A=adxA = \int {adx}
Substitute dvdt\dfrac{{dv}}{{dt}} for aa in the above equation.
A=dvdtdxA = \int {\dfrac{{dv}}{{dt}}dx}
A=dxdxdv\Rightarrow A = \int {\dfrac{{dx}}{{dx}}dv}
Substitute vv for dxdx\dfrac{{dx}}{{dx}} in the above equation.
A=vdv\Rightarrow A = \int {vdv} …… (1)
Now calculate the total area under the acceleration-displacement curve.
There are three rectangles of the same size and one triangle formed under the curve.
Hence, the area under the curve is the sum of areas of 3 rectangles and one triangle.
A=3×area of rectangle+area of triangle\Rightarrow A = 3 \times {\text{area of rectangle}} + {\text{area of triangle}}
A=3×(length×breadth)+12(base)(height)\Rightarrow A = 3 \times \left( {{\text{length}} \times {\text{breadth}}} \right) + \dfrac{1}{2}\left( {{\text{base}}} \right)\left( {{\text{height}}} \right)
Substitute 100m100\,{\text{m}} for length{\text{length}}, 0.4ms20.4\,{\text{m}} \cdot {{\text{s}}^{ - 2}} for breadth{\text{breadth}}, 100m100\,{\text{m}} for base{\text{base}} and 0.4ms20.4\,{\text{m}} \cdot {{\text{s}}^{ - 2}} for height{\text{height}} in the above equation.
A=3×(100m×0.4ms2)+12(100m)(0.4ms2)\Rightarrow A = 3 \times \left( {100\,{\text{m}} \times 0.4\,{\text{m}} \cdot {{\text{s}}^{ - 2}}} \right) + \dfrac{1}{2}\left( {100\,{\text{m}}} \right)\left( {0.4\,{\text{m}} \cdot {{\text{s}}^{ - 2}}} \right)
A=140m2\Rightarrow A = 140\,{{\text{m}}^2}
Hence, the area under the curve is 140m2s2140\,{{\text{m}}^2} \cdot {{\text{s}}^{ - 2}}.
Now, we determine the velocity of the particle at position x=0.2kmx = 0.2\,{\text{km}}.
Substitute 140m2s2140\,{{\text{m}}^2} \cdot {{\text{s}}^{ - 2}} for AA in equation (1) and integrate the right hand side equation for initial velocity 44ms1\sqrt {44} \,{\text{m}} \cdot {{\text{s}}^{ - 1}} to the velocity vv at position x=0.2kmx = 0.2\,{\text{km}}.
140m2s2=44ms1vvdv\Rightarrow 140\,{{\text{m}}^2} \cdot {{\text{s}}^{ - 2}} = \int\limits_{\sqrt {44} \,{\text{m}} \cdot {{\text{s}}^{ - 1}}}^v {vdv}
140m2s2=[v22]44ms1v\Rightarrow 140\,{{\text{m}}^2} \cdot {{\text{s}}^{ - 2}} = \left[ {\dfrac{{{v^2}}}{2}} \right]_{\sqrt {44} \,{\text{m}} \cdot {{\text{s}}^{ - 1}}}^v
140m2s2=[v22(44ms1)22]\Rightarrow 140\,{{\text{m}}^2} \cdot {{\text{s}}^{ - 2}} = \left[ {\dfrac{{{v^2}}}{2} - \dfrac{{{{\left( {\sqrt {44} \,{\text{m}} \cdot {{\text{s}}^{ - 1}}} \right)}^2}}}{2}} \right]
140=[v2222]\Rightarrow 140 = \left[ {\dfrac{{{v^2}}}{2} - 22} \right]
v2=2(140+22)\Rightarrow {v^2} = 2\left( {140 + 22} \right)
v2=2(162)\Rightarrow {v^2} = 2\left( {162} \right)
v2=324\Rightarrow {v^2} = 324
v=18ms1\Rightarrow v = 18\,{\text{m}} \cdot {{\text{s}}^{ - 1}}
Therefore, the required velocity of the particle is 18ms118\,{\text{m}} \cdot {{\text{s}}^{ - 1}}.

So, the correct answer is “Option B”.

Note:
The students may think that the area under the curve obtained does not have the unit of area which is meter square. But students should keep in mind that we have just mentioned the terms as area (as it is the area under the curve) but the area under the acceleration-displacement curve actually gives the kinetic energy per unit mass of the particle.