Solveeit Logo

Question

Question: A particle starts from the origin at t = 0. It moves in a plane with a velocity given by: \(\overrig...

A particle starts from the origin at t = 0. It moves in a plane with a velocity given by: v=v0i^\overrightarrow{v} = v_{0}\widehat{i}+ (awcoswt)j^\widehat{j}. The equation of trajectory of the particle is –

A

y = a sin wt

B

y = a coswt

C

y = a sin(ωxv0)\left( \frac{\omega x}{v_{0}} \right)

D

y = a cos(ωxv0)\left( \frac{\omega x}{v_{0}} \right)

Answer

y = a sin(ωxv0)\left( \frac{\omega x}{v_{0}} \right)

Explanation

Solution

vx = dxdt\frac { \mathrm { dx } } { \mathrm { dt } } = v0 ̃ x = v0t, vy = dydt\frac { \mathrm { dy } } { \mathrm { dt } } = aw cos wt

̃ y = aω\int \mathrm { a } \omega cos wt dt = aωsinωtω\frac { \mathrm { a } \omega \sin \omega \mathrm { t } } { \omega } = a sin wt = a sin w (xv0)\left( \frac { \mathrm { x } } { \mathrm { v } _ { 0 } } \right)