Solveeit Logo

Question

Question: A particle starts from origin at t = 0 with a velocity \(5\widehat{i}ms^{- 1}\)and moves in x-y plan...

A particle starts from origin at t = 0 with a velocity 5i^ms15\widehat{i}ms^{- 1}and moves in x-y plane under the action of force which produces a constant acceleration of 3i^+2j^ms23\widehat{i} + 2\widehat{j}ms^{- 2}. The y-coordinate of the particle at the instant when its x-coordinate is 84 m is

A

12 m

B

24 m

C

36 m

D

48 m

Answer

36 m

Explanation

Solution

The positions of the particle is given by

r=r0+v0t+12at2\overset{\rightarrow}{r} = \overset{\rightarrow}{r_{0}} + {\overset{\rightarrow}{v}}_{0}t + \frac{1}{2}\overset{\rightarrow}{a}t^{2}

Where, r0{\overset{\rightarrow}{r}}_{0}is the position vector at t = 0

v0{\overset{\rightarrow}{v}}_{0}is the velocity at t = 0

Here, r0=0,v0=5i^ms1,a=3i^+2j^ms2{\overset{\rightarrow}{r}}_{0} = 0,{\overset{\rightarrow}{v}}_{0} = 5\widehat{i}ms^{- 1},\overset{\rightarrow}{a} = 3\widehat{i} + 2\widehat{j}ms^{- 2}

r=5ti^+12(3i^+2j^)t2=(5t+1.5t2)i^+1t2j^\therefore\overset{\rightarrow}{r} = 5t\widehat{i} + \frac{1}{2}(3\widehat{i} + 2\widehat{j})t^{2} = (5t + 1.5t^{2})\widehat{i} + 1t^{2}\widehat{j}

Compare it with r=xi^+yj^,\overset{\rightarrow}{r} = x\widehat{i} + y\widehat{j}, we get

x=5t+1.5t2,y=1t2x = 5t + 1.5t^{2},y = 1t^{2}

Given : x = 84 m

84=5t1.5t2\therefore 84 = 5t - 1.5t^{2}

1.5t2+5t84=01.5t^{2} + 5t - 84 = 0

3t2+10t168=03t^{2} + 10t - 168 = 0

On solving, we get t = 6s

At t = 6s, y = (1) (6)2=36m(6)^{2} = 36m

r=r0+v0t+12at2\overset{\rightarrow}{r} = \overset{\rightarrow}{r_{0}} + {\overset{\rightarrow}{v}}_{0}t + \frac{1}{2}\overset{\rightarrow}{a}t^{2}