Solveeit Logo

Question

Physics Question on Motion in a plane

A particle starts from origin at t=0t = 0 with a velocity 5i^ms15\hat{i}\,ms^{-1} and moves in xx-yy plane under the action of a force which produces a constant acceleration of 3i^+2j^ms23\hat{i}+2\hat{j}\,ms^{-2}, the speed of the particle at this time is

A

16ms116\, m s^{-1}

B

26ms126\, ms^{-1}

C

36ms136\, ms^{-1}

D

46ms146\, m s^{-1}

Answer

26ms126\, ms^{-1}

Explanation

Solution

The position of the particle is given by r=r0+v0t+12at2\vec{r}=\vec{r}_{0}+\vec{v}_{0}t+\frac{1}{2}\vec{a}t^{2} where, r0\vec{r}_{0} is the position vector at t=0t = 0 and v0\vec{v}_{0} is the velocity at t=0t = 0 Here, r0=0\vec{r}_{0}=0, v0=5i^ms1\vec{v}_{0}=5\hat{i}\,ms^{-1}, a=(3i^+2j^)ms2\vec{a}=\left(3\hat{i}+2\hat{j}\right)ms^{-2} r=5ti^+12(3i^+2j^)t2\therefore \vec{r}=5t\,\hat{i}+\frac{1}{2}\left(3\hat{i}+2\hat{j}\right)t^{2} =(5t+1.5t2)i^+1t2j^...(i)=\left(5t+1.5t^{2}\right)\hat{i}+1t^{2}\,\hat{j}\,...\left(i\right) Velocity, v=drdt=ddt(5t+1.5t2)i^+1t2j^\vec{v}=\frac{d\vec{r}}{dt}=\frac{d}{dt}\left(5t+1.5t^{2}\right)\hat{i}+1t^{2}\,\hat{j} =(5+3t)i^+2tj^=\left(5+3t\right)\hat{i}+2t\,\hat{j} At t=6st=6\,s, v=23i^+12j^\vec{v}=23\hat{i}+12\hat{j} The speed of the particle is v=(23)2+(12)2\left|\vec{v}\right|=\sqrt{\left(23\right)^{2}+\left(12\right)^{2}} 26ms1 \approx 26\,ms^{-1}