Solveeit Logo

Question

Physics Question on Kinematics

A particle starts from origin at t=0t = 0 with a velocity 5i^m/s5\hat{i} \, \text{m/s} and moves in the x x-yy plane under the action of a force that produces a constant acceleration of (3i^+2j^)m/s2(3\hat{i} + 2\hat{j}) \, \text{m/s}^2. If the xx-coordinate of the particle at that instant is 84 m, then the speed of the particle at this time is αm/s\sqrt{\alpha} \, \text{m/s}. The value of α\alpha is ______.

Answer

Given initial velocity ux=5m/su_x = 5 \, \text{m/s}, acceleration ax=3m/s2a_x = 3 \, \text{m/s}^2, and x=84mx = 84 \, \text{m}.

Using the equation:

vx2=ux2+2axxv_x^2 = u_x^2 + 2a_xx

vx2=52+2384=25+504=529v_x^2 = 5^2 + 2 \cdot 3 \cdot 84 = 25 + 504 = 529

vx=23m/sv_x = 23 \, \text{m/s}

Similarly, for the y-direction:

vy=uy+ayt=0+2tv_y = u_y + a_y t = 0 + 2 \cdot t

Using vx=ux+axtv_x = u_x + a_x t:

t=vxuxax=2353=6st = \frac{v_x - u_x}{a_x} = \frac{23 - 5}{3} = 6 \, \text{s}

Then,

vy=2×6=12m/sv_y = 2 \times 6 = 12 \, \text{m/s}

The speed of the particle is:

v=vx2+vy2=232+122=529+144=673v = \sqrt{v_x^2 + v_y^2} = \sqrt{23^2 + 12^2} = \sqrt{529 + 144} = \sqrt{673}

Thus, α=673\alpha = 673.