Solveeit Logo

Question

Physics Question on Oscillations

A particle performs simple harmonic motion with amplitude AA. Its speed is increased to three times at an instant when its displacement is 2A3\frac{2A}{3}. The new amplitude of motion is nA3\frac{nA}{3}. The value of nn is _____.

Answer

At x=2A3x = \frac{2A}{3},

v=ωA2(2A3)2=ω5A29=ω5A3v = \omega \sqrt{A^2 - \left(\frac{2A}{3}\right)^2} = \omega \sqrt{\frac{5A^2}{9}} = \omega \frac{\sqrt{5}A}{3}

New amplitude is AA':

v=3v=3(ω5A3)=ω(A)2(2A3)2v' = 3v = 3 \left( \omega \frac{\sqrt{5}A}{3} \right) = \omega \sqrt{(A')^2 - \left(\frac{2A}{3}\right)^2} ω5A=ω(A)2(2A3)2\omega \sqrt{5}A = \omega \sqrt{(A')^2 - \left(\frac{2A}{3}\right)^2}

Squaring both sides:

5A2=(A)2(2A3)25A^2 = (A')^2 - \left(\frac{2A}{3}\right)^2 (A)2=5A2+(4A29)=45A29+4A29=49A29(A')^2 = 5A^2 + \left(\frac{4A^2}{9}\right) = \frac{45A^2}{9} + \frac{4A^2}{9} = \frac{49A^2}{9} A=7A3A' = \frac{7A}{3} n=7\therefore \, n = 7