Solveeit Logo

Question

Physics Question on Oscillations

A particle performs simple harmonic motion with amplitude AA. Its speed is trebled at the instant that it is at a distance 2A3\frac{2A}{3} from equilibrium position. The new amplitude of the motion is :

A

A341\frac{A}{3} \sqrt{41}

B

3A

C

A3A \sqrt{3}

D

7A3\frac{7A}{3}

Answer

7A3\frac{7A}{3}

Explanation

Solution

mω2=km \omega^{2} = k
Total initial energy =12kA2 = \frac{1}{2} kA^{2}
at x=2A3, x = \frac{2A}{3}, potential energy =12k(2A3)2=(12kA2)(49) = \frac{1}{2}k \left(\frac{2A}{3}\right)^{2} = \left(\frac{1}{2} kA^{2}\right) \left(\frac{4}{9}\right)
Kinetic energy at (x=2A3)=(12kA2).(59) \left(x = \frac{2A}{3}\right) = \left(\frac{1}{2} kA^{2}\right). \left(\frac{5}{9}\right)
If speed is tripled, new Kinetic energy =12kA2.59=52kA2= \frac{1}{2}kA^{2} . \frac{5}{9} = \frac{5}{2} kA^{2}
\therefore New total energy =52kA2+12kA2(49)=kA22(499)= \frac{5}{2} kA^{2} + \frac{1}{2} kA^{2} \left(\frac{4}{9}\right) = \frac{kA^{2}}{2} \left( \frac{49}{9}\right)
If next amplitude = A' ; then 12kA2=12kA2(499)A=73A\frac{1}{2}kA'^{2} = \frac{1}{2} k A^{2} \left(\frac{49}{9} \right) \Rightarrow A' = \frac{7}{3} A