Solveeit Logo

Question

Physics Question on Oscillations

A particle performs SHM along a straight line with the period T and amplitude A. The mean velocity of the particle averaged over the time interval during which it travels a distance A/2 starting from the extreme position is:

A

A2T\frac{A}{2T}

B

AT\frac{A}{T}

C

2AT\frac{2A}{T}

D

3AT\frac{3A}{T}

Answer

3AT\frac{3A}{T}

Explanation

Solution

The position of particle x=Acos2πTtx=A \cos \frac{2 \pi}{T} t (As the particle starting from mean position) Velocity v=A2πTsin(2πTt)v =- A \frac{2 \pi}{ T } \sin \left(\frac{2 \pi}{ T } t \right) Let it will take t' time in reaching from AA to A2\frac{ A }{2}. So, A2=Acos(2πTt)\frac{ A }{2}= A \cos \left(\frac{2 \pi}{ T } t '\right) 2πTt=π3\Rightarrow \frac{2 \pi}{ T } t '=\frac{\pi}{3} t=T6\Rightarrow t '=\frac{ T }{6} So, the required mean velocity over this time period vav=0T6vdt0T6dtv _{ av }=\frac{\int\limits_{0}^{\frac{ T }{6}} v dt }{\int\limits_{0}^{\frac{ T }{6}} dt } =6T0TA(2πT)sin(2πTt)dt=\frac{6}{ T } \int\limits_{0}^{ T }- A \left(\frac{2 \pi}{ T }\right) \sin \left(\frac{2 \pi}{ T } t \right) dt =6×2πAT2×T2π[cos(2πTt)]0T6=\frac{6 \times 2 \pi A }{ T ^{2}} \times \frac{ T }{2 \pi}\left[-\cos \left(\frac{2 \pi}{ T } t \right)\right]_{0}^{\frac{ T }{6}} =12πAT2[121]×T2π=\frac{12 \pi A }{ T ^{2}}\left[\frac{1}{2}-1\right] \times \frac{ T }{2 \pi} =3AT=-\frac{3 A }{ T } So, the magnitude of vavv _{ av } is 3AT\frac{3 A }{ T }