Solveeit Logo

Question

Physics Question on Oscillations

A particle performing SHMSHM has time period 2π3\frac{2\pi}{\sqrt3} and path length 4cm4\, cm . The displacement from mean position at which acceleration is equal to velocity is

A

0cm0 \,cm

B

0.5cm0.5 \,cm

C

1cm1 \,cm

D

1.5cm1.5 \,cm

Answer

1cm1 \,cm

Explanation

Solution

Velocity v=ωA2x2v=\omega \sqrt{A^{2}-x^{2}}
and acceleration =ω2x=\omega^{2} x
Given, ωA2x2=ω2x\omega \sqrt{A^{2}-x^{2}}=\omega^{2} x
or A2x2=ωx \sqrt{A^{2}-x^{2}}=\omega x...(i)
Given, T=2π3 T=\frac{2 \pi}{\sqrt{3}}
and ω=2πT=3\omega=\frac{2 \pi}{T}=\sqrt{3}
Substituting the value of ω\omega in EqEq (i), we get
A2x2=3x\sqrt{A^{2}-x^{2}}=\sqrt{3} x
A=2x\Rightarrow A=2 x
As amplitude = path length 2=2cm=\frac{\text { path length }}{2}=2 cm
x=1cm\Rightarrow x=1 cm