Solveeit Logo

Question

Physics Question on work, energy and power

A particle of mass MM, starting from rest, undergoes uniform acceleration. If the speed acquired in time TT is VV, the power delivered to the particle is

A

MV2T\frac{MV^2}{T}

B

12MV2T2\frac{1}{2}\frac{MV^2}{T^2}

C

MV2T2\frac{MV^2}{T^2}

D

12MV2T\frac{1}{2}\frac{MV^2}{T}

Answer

12MV2T\frac{1}{2}\frac{MV^2}{T}

Explanation

Solution

The correct option is(D): 12MV2T\frac{1}{2}\frac{MV^2}{T}
Power delivered in time T is
P=FV=MaVP = F\cdot V = MaV
or P = MV dvdtPdT=MVdV\frac{dv}{dt} \, \, \Rightarrow \, \, \, PdT = MVdV
PT=MV22\Rightarrow \, \, \, \, \, \, \, \, \, \, PT=\frac{MV^2}{2} or p=12MV2Tp=\frac{1}{2}\frac{MV^2}{T}