Solveeit Logo

Question

Question: A particle of mass M rests on a straight groove along which it is constrained to move. A perfectly e...

A particle of mass M rests on a straight groove along which it is constrained to move. A perfectly elastic rubber band of natural length l and uniform area of cross-section is attached with the particle. The other end of the band is suspended from a rigid support. A force K(l'2 - l2)1/2is required to stretch the band to a length l'. The particle is moved to a distance S (where S << 1) and then released. Taking K = MgS\frac { \mathrm { Mg } } { \mathrm { S } } and μas the coefficient of friction between the particle and the groove, the velocity of particle when passing through the initial position is

A

gS31(2S3μ1)1/2\frac { g S } { 31 } ( 2 S - 3 \mu 1 ) ^ { 1 / 2 }

B

[gS31(2 S3μl)]1/2\left[ \frac { \mathrm { gS } } { 31 } ( 2 \mathrm {~S} - 3 \mu \mathrm { l } ) \right] ^ { 1 / 2 }

C

gS1(3S2μl)1/2\frac { g S } { 1 } ( 3 S - 2 \mu l ) ^ { 1 / 2 }

D

[gS21(3 S2μl)]1/2\left[ \frac { \mathrm { gS } } { 21 } ( 3 \mathrm {~S} - 2 \mu \mathrm { l } ) \right] ^ { 1 / 2 }

Answer

gS31(2S3μ1)1/2\frac { g S } { 31 } ( 2 S - 3 \mu 1 ) ^ { 1 / 2 }

Explanation

Solution

Let the particle be at a distance x at any instant and T be the tension in the string then

T = K(l'2 – l2)1/2 = Kx

Net force tending to make the particle move further through dx.

Work done = [Kx21μ(MgKx)]dx\left[ \frac { \mathrm { Kx } ^ { 2 } } { 1 } - \mu ( \mathrm { Mg } - \mathrm { Kx } ) \right] \mathrm { dx }

12Mv2=0[Kx21μ(MgKx)]dx\frac { 1 } { 2 } \mathrm { Mv } ^ { 2 } = \int _ { 0 } \left[ \frac { K x ^ { 2 } } { 1 } - \mu ( M g - K x ) \right] d x

= Mg31(332μ1)\frac { \operatorname { Mg } } { 31 } \left( 3 - \frac { 3 } { 2 } \mu 1 \right)

or v = [gS31(2 S3μl)]1/2\left[ \frac { \mathrm { gS } } { 31 } ( 2 \mathrm {~S} - 3 \mu \mathrm { l } ) \right] ^ { 1 / 2 }