Solveeit Logo

Question

Question: A particle of mass m is revolving in a horizontal circle of radius r with a constant angular speed ω...

A particle of mass m is revolving in a horizontal circle of radius r with a constant angular speed ω. The areal velocity of the particle is

A

r2ω

B

r2θ

C

r22ω\frac{r^{2}}{2}\omega

D

rω22\frac{r\omega^{2}}{2}

Answer

r22ω\frac{r^{2}}{2}\omega

Explanation

Solution

Areal velocity = dAdt\frac{dA}{dt} where A = area of the sector

= r2θ2\frac{r^{2}\theta}{2}

dAdt\frac{dA}{dt} = ddt(r2θ2)\frac{d}{dt}\left( \frac{r^{2}\theta}{2} \right) = r22dθdt\frac{r^{2}}{2}\frac{d\theta}{dt} = r22ω\frac{r^{2}}{2}\omega.