Solveeit Logo

Question

Physics Question on projectile motion

A particle of mass ' mm ' is projected with a velocity vv making an angle of 3030^{\circ} with the horizontal. The magnitude of angular momentum of the projectile about the point of projection when the particle is at its maximum height ' hh ' is

A

32mv2g\frac{\sqrt{3}}{2} \frac{mv^{2}}{g}

B

zero

C

mv32g\frac{mv^{3}}{\sqrt{2g}}

D

316mg3g\frac{\sqrt{3}}{16} \frac{mg^{3}}{g}

Answer

316mg3g\frac{\sqrt{3}}{16} \frac{mg^{3}}{g}

Explanation

Solution

Given: A particle of mass mm is projected with a velocity vv making an angle of 30 with the horizontal.
To find the magnitude of the angular momentum of the projectile about the point of projection when the particle is at its maximum height hh
Let the velocity of the projection be vv and angle of projection be θ=30\theta=30^{\circ}
Angular momentum, L=r×mv\vec{ L }=\vec{ r } \times m \vec{ v }
L=rmvsinθ\Rightarrow|\vec{ L }|= rmv \sin \theta
At maximum point, velocity is
v=vcosθ=vcos(30)=3v2v = v \cos \theta= v \cos (30)=\frac{\sqrt{3} v }{2}
only (direction: towards horizontal) and no vertical velocity is present.
The maximum height reached will be
h=v2sin2θ2gh=\frac{v^{2} \sin ^{2} \theta}{2 g}
h=v2sin2(30)2g\Rightarrow h=\frac{v^{2} \sin ^{2}\left(30^{\circ}\right)}{2 g}
h=v28g\Rightarrow h =\frac{ v ^{2}}{8 g }
From the figure,
L=rmvsinθL =r m v \sin \theta
L=mvh\Rightarrow L=m v h
L=m×3v2×v28g\Rightarrow L=m \times \frac{\sqrt{3} v}{2} \times \frac{v^{2}}{8 g}
L=3mv316g\Rightarrow L=\frac{\sqrt{3} m v^{3}}{16 g}
is the magnitude of the angular momentum of the projectile about the point of projection when the particle is at its maximum height hh.