Solveeit Logo

Question

Question: A particle of mass m is projected upwards with velocity v = ![](https://cdn.pureessence.tech/canvas_...

A particle of mass m is projected upwards with velocity v = , where ve is the escape velocity then at the maximum height the potential energy of the particle is : (R is radius of earth and M is mass of earth)

A

GMm2R\frac { - \mathrm { GMm } } { 2 \mathrm { R } }

B

GMm4R\frac { - \mathrm { GMm } } { 4 \mathrm { R } }

C

D

2GMm3R\frac { - 2 \mathrm { GMm } } { 3 \mathrm { R } }

Answer

Explanation

Solution

When only conservative forces are acting, mechanical energy is conserved and at maximum height speed is zero.

GMmR+12 m(ve2)2\frac { - \mathrm { GMm } } { \mathrm { R } } + \frac { 1 } { 2 } \mathrm {~m} \left( \frac { \mathrm { v } _ { \mathrm { e } } } { 2 } \right) ^ { 2 }= U + 0

GMmR+12 m(GM2R)=U\frac { - \mathrm { GMm } } { \mathrm { R } } + \frac { 1 } { 2 } \mathrm {~m} \left( \frac { \mathrm { GM } } { 2 \mathrm { R } } \right) = \mathrm { U }

U = =