Solveeit Logo

Question

Physics Question on projectile motion

A particle of mass m is projected from ground with speed u at an angle of 30° with the horizontal. Find its angular momentum about the point of projection when it reaches its maximum height.

A

mu316g\frac{mu^3}{16g}

B

3mu316g{\frac{\sqrt3mu^3}{16g}}

C

mu33g\frac{mu^3}{3g}

D

Zero

Answer

3mu316g{\frac{\sqrt3mu^3}{16g}}

Explanation

Solution

Step 1. Determine the Horizontal Component of Velocity: The horizontal component of the initial velocity ux=ucosθu_x = u \cos \theta. Given θ=30\theta = 30^\circ:

ux=ucos30=u×32=3u2u_x = u \cos 30^\circ = u \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3} \, u}{2}

Step 2. Calculate the Vertical Component of Initial Velocity: The vertical component of the initial velocity uy=usinθu_y = u \sin \theta. With θ=30\theta = 30^\circ:

uy=usin30=u×12=u2u_y = u \sin 30^\circ = u \times \frac{1}{2} = \frac{u}{2}

Step 3. Find Time to Reach Maximum Height: At maximum height, the vertical velocity becomes zero. Using vy=uygtv_y = u_y - gt:

0=u2gtt=u2g0 = \frac{u}{2} - gt \Rightarrow t = \frac{u}{2g}

Step 4. Calculate Maximum Height HH: Use the equation H=uyt12gt2H = u_y t - \frac{1}{2}gt^2:

H=u2×u2g12g(u2g)2=u24gu28g=u28gH = \frac{u}{2} \times \frac{u}{2g} - \frac{1}{2} g \left( \frac{u}{2g} \right)^2 = \frac{u^2}{4g} - \frac{u^2}{8g} = \frac{u^2}{8g}

Step 5. Calculate Angular Momentum about the Point of Projection: Angular momentum LL about the point of projection is given by L=muxHL = mu_x H. - Substituting ux=3u2u_x = \frac{\sqrt{3} \, u}{2} and H=u28gH = \frac{u^2}{8g}:

L=m×3u2×u28g=3mu316gL = m \times \frac{\sqrt{3} \, u}{2} \times \frac{u^2}{8g} = \frac{\sqrt{3} \, mu^3}{16g}