Solveeit Logo

Question

Question: A particle of mass $m$ is moving with constant speed in a vertical circle in $x-z$ plane. There is a...

A particle of mass mm is moving with constant speed in a vertical circle in xzx-z plane. There is a small bulb at some distance on zz-axis. The maximum distance of the shadow of the particle on xx-axis from origin equal to

A

17524\frac{175}{24} m

B

12524\frac{125}{24} m

C

25 m

D

24 m

Answer

175/24 m

Explanation

Solution

The problem asks for the maximum distance of the shadow of a particle on the x-axis from the origin. The particle moves in a vertical circle in the x-z plane.

  1. Identify the coordinates of the relevant points:

    • The circle is centered at the origin (0,0) and has a radius R=7R = 7 m.
    • The position of the particle P on the circle can be parameterized as (xp,zp)=(Rcosθ,Rsinθ)=(7cosθ,7sinθ)(x_p, z_p) = (R\cos\theta, R\sin\theta) = (7\cos\theta, 7\sin\theta), where θ\theta is the angle measured from the positive x-axis.
    • The light source (bulb) is on the z-axis. From the diagram, it is 18 m above the top of the circle. The top of the circle is at z=R=7z = R = 7 m. Therefore, the z-coordinate of the light source L is ZL=7+18=25Z_L = 7 + 18 = 25 m. So, L=(0,25)L = (0, 25).
    • The shadow S is cast on the x-axis, so its z-coordinate is 0. Let its position be S=(xs,0)S = (x_s, 0).
  2. Establish collinearity:

    The light ray passes through the light source L, the particle P, and the shadow S. This means the points L, P, and S are collinear. We can use the property that the slope of the line LP is equal to the slope of the line LS.

    Slope of LP = zpZLxp0=zpZLxp\frac{z_p - Z_L}{x_p - 0} = \frac{z_p - Z_L}{x_p}

    Slope of LS = 0ZLxs0=ZLxs\frac{0 - Z_L}{x_s - 0} = \frac{-Z_L}{x_s}

    Equating the slopes: zpZLxp=ZLxs\frac{z_p - Z_L}{x_p} = \frac{-Z_L}{x_s} Rearranging to solve for xsx_s: xs(zpZL)=ZLxpx_s (z_p - Z_L) = -Z_L x_p xs=ZLxpzpZL=ZLxpZLzpx_s = \frac{-Z_L x_p}{z_p - Z_L} = \frac{Z_L x_p}{Z_L - z_p}

  3. Substitute the coordinates and parameters:

    Substitute ZL=25Z_L = 25, xp=7cosθx_p = 7\cos\theta, and zp=7sinθz_p = 7\sin\theta into the equation for xsx_s: xs=25(7cosθ)257sinθ=175cosθ257sinθx_s = \frac{25 (7\cos\theta)}{25 - 7\sin\theta} = \frac{175\cos\theta}{25 - 7\sin\theta}

  4. Find the maximum value of xs|x_s| using calculus:

    To find the maximum distance, we need to find the maximum value of xs|x_s|. This involves finding the critical points by differentiating xsx_s with respect to θ\theta and setting the derivative to zero.

    Let f(θ)=xs=175cosθ257sinθf(\theta) = x_s = \frac{175\cos\theta}{25 - 7\sin\theta}.

    Using the quotient rule ddθ(uv)=uvuvv2\frac{d}{d\theta}\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2}:

    u=175cosθ    u=175sinθu = 175\cos\theta \implies u' = -175\sin\theta

    v=257sinθ    v=7cosθv = 25 - 7\sin\theta \implies v' = -7\cos\theta

    dxsdθ=(175sinθ)(257sinθ)(175cosθ)(7cosθ)(257sinθ)2\frac{dx_s}{d\theta} = \frac{(-175\sin\theta)(25 - 7\sin\theta) - (175\cos\theta)(-7\cos\theta)}{(25 - 7\sin\theta)^2} dxsdθ=175×25sinθ+175×7sin2θ+175×7cos2θ(257sinθ)2\frac{dx_s}{d\theta} = \frac{-175 \times 25\sin\theta + 175 \times 7\sin^2\theta + 175 \times 7\cos^2\theta}{(25 - 7\sin\theta)^2} dxsdθ=175(25sinθ+7(sin2θ+cos2θ))(257sinθ)2\frac{dx_s}{d\theta} = \frac{175(-25\sin\theta + 7(\sin^2\theta + \cos^2\theta))}{(25 - 7\sin\theta)^2} Since sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1: dxsdθ=175(725sinθ)(257sinθ)2\frac{dx_s}{d\theta} = \frac{175(7 - 25\sin\theta)}{(25 - 7\sin\theta)^2} Set dxsdθ=0\frac{dx_s}{d\theta} = 0 to find critical points: 175(725sinθ)=0175(7 - 25\sin\theta) = 0 725sinθ=07 - 25\sin\theta = 0 sinθ=725\sin\theta = \frac{7}{25}

  5. Calculate cosθ\cos\theta and the corresponding xsx_s values:

    Using the identity sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1: cos2θ=1(725)2=149625=62549625=576625\cos^2\theta = 1 - \left(\frac{7}{25}\right)^2 = 1 - \frac{49}{625} = \frac{625 - 49}{625} = \frac{576}{625} cosθ=±576625=±2425\cos\theta = \pm\sqrt{\frac{576}{625}} = \pm\frac{24}{25}

    • Case 1: sinθ=725\sin\theta = \frac{7}{25} and cosθ=2425\cos\theta = \frac{24}{25} (Particle in the first quadrant) xs=175(2425)257(725)=7×25×2425254925=7×246254925=16857625x_s = \frac{175 \left(\frac{24}{25}\right)}{25 - 7 \left(\frac{7}{25}\right)} = \frac{7 \times 25 \times \frac{24}{25}}{25 - \frac{49}{25}} = \frac{7 \times 24}{\frac{625 - 49}{25}} = \frac{168}{\frac{576}{25}} xs=168×25576=(7×24)×2524×24=7×2524=17524 mx_s = \frac{168 \times 25}{576} = \frac{(7 \times 24) \times 25}{24 \times 24} = \frac{7 \times 25}{24} = \frac{175}{24} \text{ m}

    • Case 2: sinθ=725\sin\theta = \frac{7}{25} and cosθ=2425\cos\theta = -\frac{24}{25} (Particle in the second quadrant) xs=175(2425)257(725)=175×2425254925=17524 mx_s = \frac{175 \left(-\frac{24}{25}\right)}{25 - 7 \left(\frac{7}{25}\right)} = \frac{-175 \times \frac{24}{25}}{25 - \frac{49}{25}} = -\frac{175}{24} \text{ m}

  6. Determine the maximum distance:

    The distance of the shadow from the origin is xs|x_s|.

    From Case 1, xs=17524=17524|x_s| = \left|\frac{175}{24}\right| = \frac{175}{24} m.

    From Case 2, xs=17524=17524|x_s| = \left|-\frac{175}{24}\right| = \frac{175}{24} m.

    Both critical points yield the same maximum distance from the origin.

The maximum distance of the shadow of the particle on the x-axis from the origin is 17524\frac{175}{24} m.