Solveeit Logo

Question

Physics Question on laws of motion

A particle of mass m is moving such that its velocity at a point (x,y) is given by v = α (yi^\hat{i} + 2xj^\hat{j}), where α is a non-zero constant. What is the resultant force acting on the particle?

A

F = mα2^2(yi^\hat{i}+ 2xj^\hat{j})

B

F = mα2^2 (xi^\hat{i} + 2yj^\hat{j})

C

F = 2mα2^2(yi^\hat{i}+ 2xj^\hat{j})

D

F = 2mα2^2 (xi^\hat{i} + yj^\hat{j})

Answer

F = 2mα2^2 (xi^\hat{i} + yj^\hat{j})

Explanation

Solution

The correct answer is (D) F = 2mα2^2 (xi^\hat{i} + yj^\hat{j})

V\vec{V}=α(yi^+2xj^)\alpha(y\hat{i}+2x\hat{j})

Vx=dxdt=αyandVy=dydt=2αX\Rightarrow V_x=\frac{dx}{dt}=\alpha y\,\,and\,\,V_y=\frac{dy}{dt}=2\alpha X

a=dvdt=αdydti^+2αdxdtj^=[(α)(2αx)i^+2α(αy)j^]\vec{a}=\frac{d\vec{v}}{dt}=\alpha\frac{dy}{dt}\hat{i}+2\alpha\frac{dx}{dt}\hat{j}=[(\alpha)(2\alpha x)\hat{i}+2\alpha(\alpha y)\hat{j}]

a=[(2α2x)i^+(2α2y)j^]\vec{a}=[(2\alpha^2x)\hat{i}+(2\alpha^2y)\hat{j}]

a=2α2[xi^+yj^]\vec{a}=2\alpha^2[x\hat{i}+y\hat{j}]

Fnet\vec{F_{net}} = ma=2mα2[xi^+yj^]m\vec{a}=2m\alpha^2[x\hat{i}+y\hat{j}]