Solveeit Logo

Question

Physics Question on Relative Velocity

A particle of mass 𝑚 is moving in the xy-plane such that its velocity at a point (x, y) is given as v=a(yxˆ+2xyˆ)\overrightarrow{v}=a(y\^{x}+2x\^{y}) where 𝛼 is a non-zero constant. What is the force F acting on the particle?

A

𝐹=2ma2(xxˆ+yyˆ)\overrightarrow{𝐹} = 2ma^2(x\^{x}+y\^{y})

B

𝐹=ma2(yxˆ+2xyˆ)\overrightarrow{𝐹} = ma^2(y\^{x}+2x\^{y})

C

𝐹=2ma2(yxˆ+xyˆ)\overrightarrow{𝐹} = 2ma^2(y\^{x}+x\^{y})

D

𝐹=ma2(xxˆ+2yyˆ)\overrightarrow{𝐹} = ma^2(x\^{x}+2y\^{y})

Answer

𝐹=2ma2(xxˆ+yyˆ)\overrightarrow{𝐹} = 2ma^2(x\^{x}+y\^{y})

Explanation

Solution

The correct option is(A): 𝐹=2ma2(xxˆ+yyˆ)\overrightarrow{𝐹} = 2ma^2(x\^{x}+y\^{y})