Solveeit Logo

Question

Physics Question on Magnetism and matter

A particle of mass m is moving in the potential
V(x)={V0+12mω0P2x2if x>0if x0V(x) = \begin{cases} V_0 + \frac{1}{2} m \omega_{0P}^2 x^2 & \quad \text{if } x > 0 \\\\\infty & \quad \text{if } x \leq 0 \end{cases}
Figures P, Q, R, and S show different combinations of the values of ω0\omega_0 and V0V_0.

Let Ej(P)E^{(P)}_j, Ej(Q)E^{(Q)}_j, Ej(R)E^{(R)}_j, and Ej(S)E^{(S)}_j with j=0,1,2,j = 0, 1, 2, \ldots, be the eigen-energies of the j-th level for the potentials shown in Figures P, Q, R, and S, respectively. Which of the following statements is/are true?

A

E0(P)=E0(Q)E^{(P)}_0 = E^{(Q)}_0

B

E0(Q)=E0(S)E^{(Q)}_0 = E^{(S)}_0

C

E0(P)=E0(R)E^{(P)}_0 = E^{(R)}_0

D

E0(R)E0(Q)E^{(R)}_0 \neq E^{(Q)}_0

Answer

E0(Q)=E0(S)E^{(Q)}_0 = E^{(S)}_0

Explanation

Solution

The correct Answers are (B):E0(Q)=E0(S)E^{(Q)}_0 = E^{(S)}_0,(C):E0(P)=E0(R)E^{(P)}_0 = E^{(R)}_0,(D):E0(R)E0(Q)E^{(R)}_0 \neq E^{(Q)}_0