Solveeit Logo

Question

Question: A particle of mass m is moving in a horizontal circle of radius r under centripetal force equal to \...

A particle of mass m is moving in a horizontal circle of radius r under centripetal force equal to Kr2-\dfrac{K}{{{r}^{2}}}, where K is a constant. The total energy of the particle is:
A. K2r2-\dfrac{K}{2{{r}^{2}}}
B. K2r2-\dfrac{K}{2{{r}^{2}}}
C. K2r2-\dfrac{K}{2{{r}^{2}}}
D. K2r2-\dfrac{K}{2{{r}^{2}}}

Explanation

Solution

Hint: When a particle is moving in a horizontal circle then the total energy of the particle will be the sum of kinetic energy and potential energy of the particle.

Complete answer:
Given,

When the particle is moving in a horizontal circle than the centripetal force act on the body

= mv2r=Kr2\dfrac{m{{v}^{2}}}{r}=\dfrac{-K}{{{r}^{2}}}(negative sign indicates the direction only)

mv2=Kr\Rightarrow m{{v}^{2}}=\dfrac{K}{r}
Kinetic Energy =12mv2=K2r\text{Kinetic Energy =}\dfrac{\text{1}}{\text{2}}\text{m}{{\text{v}}^{\text{2}}}\text{=}\dfrac{K}{\text{2r}}
PotentialEnergy=-rKr2dr\Rightarrow Potential\,Energy\text{=-}\int\limits_{\infty }^{\text{r}}{\dfrac{K}{{{\text{r}}^{\text{2}}}}\text{dr}}
PotentialEnergy=Krr2dr\Rightarrow Potential\,Energy=-K\int\limits_{\infty }^{r}{{{r}^{-2}}dr}
PotentialEnergy=K[r11]r\Rightarrow Potential\,Energy=-K\left[ \dfrac{{{r}^{-1}}}{-1} \right]_{\infty }^{r}
PotentialEnergy=K[1r+1]\Rightarrow Potential\,Energy=-K\left[ \dfrac{-1}{r}+\dfrac{1}{\infty } \right]
PotentialEnergy=Kr\Rightarrow Potential\,Energy=\dfrac{K}{r}

Total energy = kinetic energy +potential energy

K2rKr=K2r\Rightarrow \dfrac{K}{2r}-\dfrac{K}{r}=\dfrac{-K}{2r}

Therefore, the correct choice is : (C) K2r-\dfrac{K}{2r}

Note:
In the given data a negative sign indicates only the direction. so we have to exclude it in the calculation . Then the total energy of the particle will be the sum of the kinetic energy and potential energy of the system.