Solveeit Logo

Question

Question: A particle of mass m is moving along a trajectory given by \(x={{x}_{\circ }}+a\cos {{\omega }_{1...

A particle of mass m is moving along a trajectory given by
x=x+acosω1tx={{x}_{\circ }}+a\cos {{\omega }_{1}}t
y=y+bsinω2ty={{y}_{\circ }}+b\sin {{\omega }_{2}}t
The torque acting on the particle about the origin, at t=0 is:
a)m(xb+ya)ω12k^ b)+myaω12k^ c)m(xbω22+yaω12)k^ d)Zero \begin{aligned} & a)m({{x}_{\circ }}b+{{y}_{\circ }}a){{\omega }_{1}}^{2}\widehat{k} \\\ & b)+m{{y}_{\circ }}a{{\omega }_{1}}^{2}\widehat{k} \\\ & c)-m({{x}_{\circ }}b{{\omega }_{2}}^{2}+{{y}_{\circ }}a{{\omega }_{1}}^{2})\widehat{k} \\\ & d)Zero \\\ \end{aligned}

Explanation

Solution

The position of the particle with respect to the x axes and the y axes is given. In the question it is asked to determine the torque on the particle at t=0. Hence obtaining the required position vector of the particle will allow us to determine the torque about the origin.
Formula used:
r=xi^+yj^\overline{r}=\overline{x}\widehat{i}+\overline{y}\widehat{j}
a=d2rdt2a=\dfrac{{{d}^{2}}r}{d{{t}^{2}}}
τ=r×F\tau =r\times F

Complete answer:
The position vector of any particle if its coordinates are known i.e. its x coordinate is ‘x’ and y coordinate is ‘y’ then the position with respect to origin is given by,
r=xi^+yj^\overline{r}=\overline{x}\widehat{i}+\overline{y}\widehat{j}
Where i^, j^\widehat{i},\text{ }\widehat{j} are the unit vectors. Hence the position vector of the above particle is given by,
r=(x+acosω1t)i^+(y+bsinω2t)j^\overline{r}=({{x}_{\circ }}+a\cos {{\omega }_{1}}t)\widehat{i}+({{y}_{\circ }}+b\sin {{\omega }_{2}}t)\widehat{j}
The acceleration of the particle is given by the double derivative of the position vector. Hence the acceleration ‘a’ of the particle at any time t is
drdt=(aω1sinω1t)i^+(ω2bcosω2t)j^ a=d2rdt2=(aω12cosω1t)i^+(ω22bsinω2t)j^ \begin{aligned} & \dfrac{d\overline{r}}{dt}=(-a{{\omega }_{1}}\sin {{\omega }_{1}}t)\widehat{i}+({{\omega }_{2}}b\cos {{\omega }_{2}}t)\widehat{j} \\\ & a=\dfrac{{{d}^{2}}\overline{r}}{d{{t}^{2}}}=(-a{{\omega }_{1}}^{2}\cos {{\omega }_{1}}t)\widehat{i}+(-{{\omega }_{2}}^{2}b\sin {{\omega }_{2}}t)\widehat{j} \\\ \end{aligned}
From Newton’s second law the force on the particle is given by the dot product of mass into acceleration. Hence the force (F)on the particle at any time ‘t’ is equal to
F=ma F=m[(aω12sinω1t)i^+(bω22cosω2t)j^] \begin{aligned} & F=ma \\\ & \Rightarrow F=m\left[ (-a{{\omega }_{1}}^{2}\sin {{\omega }_{1}}t)\widehat{i}+(-b{{\omega }_{2}}^{2}\cos {{\omega }_{2}}t)\widehat{j} \right] \\\ \end{aligned}
At time t=0,
r=(x+acosω1t)i^+(y+bsinω2t)j^ r=(x+acosω1(0))i^+(y+bsinω2(0))j^ r=xi^+ai^+yj^....(1) \begin{aligned} & \overline{r}=({{x}_{\circ }}+a\cos {{\omega }_{1}}t)\widehat{i}+({{y}_{\circ }}+b\sin {{\omega }_{2}}t)\widehat{j} \\\ & \Rightarrow \overline{r}=({{x}_{\circ }}+a\cos {{\omega }_{1}}(0))\widehat{i}+({{y}_{\circ }}+b\sin {{\omega }_{2}}(0))\widehat{j} \\\ & \Rightarrow \overline{r}=x{{\widehat{i}}_{\circ }}+a\widehat{i}+{{y}_{\circ }}\widehat{j}....(1) \\\ \end{aligned}
And
F=m[(aω12cosω1(0))i^+(bω22sinω2(0))j^] F=maω12i^.....(2) \begin{aligned} & F=m\left[ (-a{{\omega }_{1}}^{2}\cos {{\omega }_{1}}(0))\widehat{i}+(-b{{\omega }_{2}}^{2}\sin {{\omega }_{2}}(0))\widehat{j} \right] \\\ & \Rightarrow F=-ma{{\omega }_{1}}^{2}\widehat{i}.....(2) \\\ \end{aligned}
The torque (τ\tau )about the origin of a particle is given by the cross product between the position vector and the force acting on the particle i.e. τ=r×F\tau =r\times F
From 1 and 2,
τ=r×F τ=(xi^+ai^+yj^)×(maω12i^), i^×i^=0, j^×i^=k^ τ=maω12y(k^)=maω12yk^ \begin{aligned} & \tau =r\times F \\\ & \Rightarrow \tau =({{x}_{\circ }}\widehat{i}+a\widehat{i}+{{y}_{\circ }}\widehat{j})\times (-ma{{\omega }_{1}}^{2}\widehat{i}),\text{ }\because \widehat{i}\times \widehat{i}=0,\text{ }\widehat{j}\times \widehat{i}=-\widehat{k} \\\ & \Rightarrow \tau =-ma{{\omega }_{1}}^{2}{{y}_{\circ }}(-\widehat{k})=ma{{\omega }_{1}}^{2}{{y}_{\circ }}\widehat{k} \\\ \end{aligned}

Hence the correct answer of the above question is option b.

Note:
The position vector of the particle is taken with respect to origin. Hence the torque obtained will also be with respect to the origin. Also the force acting and the acceleration are in the same direction for the particle.