Solveeit Logo

Question

Question: A particle of mass \(m\) is fixed to one end of a light spring of force constant \(k\) and unstretch...

A particle of mass mm is fixed to one end of a light spring of force constant kk and unstretched length ll. The system is rotated about the other end of the spring with an angular velocity ω\omega, in gravity free space. The increase in length of the spring will be

A

mω2lk\frac{m\omega^{2}l}{k}

B

mω2lkmω2\frac{m\omega^{2}l}{k - m\omega^{2}}

C

mω2lk+mω2\frac{m\omega^{2}l}{k + m\omega^{2}}

D

None

Answer

mω2lkmω2\frac{m\omega^{2}l}{k - m\omega^{2}}

Explanation

Solution

In the given condition elastic force will provides the required centripetal force

kx=mω2rkx = m\omega^{2}r

kx=m⥂⥂ω2(l+x)kx=mω2l+mω2xkx = m ⥂ ⥂ \omega^{2}(l + x) \Rightarrow kx = m\omega^{2}l + m\omega^{2}x \Rightarrow

x(kmω2)=mω2lx=mω2lkmω2x(k - m\omega^{2}) = m\omega^{2}l\therefore x = \frac{m\omega^{2}l}{k - m\omega^{2}}